Yayın:
Optimal design of automobile seat components using chaotic enzyme action optimization algorithm

dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorSait, Sadiq M.
dc.contributor.authorMehta, Pranav
dc.contributor.authorGürses, Dildar
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorGÜRSES, DİLDAR
dc.contributor.departmentGemlik Asım Kocabıyık Meslek Yüksek Okulu
dc.contributor.departmentElektrik ve Enerji Hibrit ve Elektrikli Araç Teknolojisi Bölümü
dc.contributor.researcheridJCN-8328-2023
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2025-11-06T16:52:56Z
dc.date.issued2025-09-08
dc.description.abstractAn enhanced version of the recently released enzyme action optimizer (EAO), the chaotic enzyme action optimizer (CEAO), is presented in this paper. It was created to solve challenging constrained engineering optimization problems. The algorithm improves exploration-exploitation balance, convergence speed, and robustness by incorporating chaotic maps like sine, cosine, and logistic functions. Five real-world mechanical design problems were used to thoroughly validate CEAO's performance. CEAO outperformed POA and PKO in rolling element bearing design, achieving the best objective value. It confirmed accuracy and stability by minimizing the weight for Belleville spring optimization, with an exceptionally low standard deviation. CEAO outperformed other competing algorithms in the multiple disc clutch brake problem, yielding the lowest fitness value. It outperformed nine cutting-edge metaheuristics and produced the best result in the cost minimization of shell-and-tube heat exchangers. Lastly, CEAO outperformed manual and algorithmic counterparts for an automotive bracket design by reducing component weight under a maximum stress constraint. The superiority of CEAO in terms of convergence, stability, and solution quality was confirmed. These results show that CEAO is a robust and highly competitive metaheuristic for resolving optimization problems at the industrial scale.
dc.identifier.doi10.1515/mt-2025-0181
dc.identifier.endpage1733
dc.identifier.issn0025-5300
dc.identifier.issue10
dc.identifier.scopus2-s2.0-105016353818
dc.identifier.startpage1725
dc.identifier.urihttps://doi.org/10.1515/mt-2025-0181
dc.identifier.urihttps://hdl.handle.net/11452/56676
dc.identifier.volume67
dc.identifier.wos001572510000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de gruyter gmbh
dc.relation.journalMaterials testing
dc.subjectMarine predators algorithm
dc.subjectParameters
dc.subjectEnzyme action optimizer
dc.subjectChaotic maps
dc.subjectDesign optimization of seat bracket
dc.subjectAutomotive industry
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleOptimal design of automobile seat components using chaotic enzyme action optimization algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentGemlik Asım Kocabıyık Meslek Yüksek Okulu/Elektrik ve Enerji Hibrit ve Elektrikli Araç Teknolojisi Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication1af1d254-5397-464d-b47b-7ddcbaff8643
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Yıldız_vd_2025.pdf
Boyut:
370.7 KB
Format:
Adobe Portable Document Format