Publication:
Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree

dc.contributor.buuauthorYılmaz, Ersen
dc.contributor.buuauthorKılıkçıer, Çaǧlar
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0001-7933-1643
dc.contributor.researcheridG-3554-2013
dc.contributor.researcheridAAH-3031-2021
dc.contributor.scopusid56965095300
dc.contributor.scopusid55946623600
dc.date.accessioned2022-06-21T11:33:28Z
dc.date.available2022-06-21T11:33:28Z
dc.date.issued2013
dc.description.abstractWe use least squares support vector machine (LS-SVM) utilizing a binary decision tree for classification of cardiotocogram to determine the fetal state. The parameters of LS-SVM are optimized by particle swarm optimization. The robustness of the method is examined by running 10-fold cross-validation. The performance of the method is evaluated in terms of overall classification accuracy. Additionally, receiver operation characteristic analysis and cobweb representation are presented in order to analyze and visualize the performance of the method. Experimental results demonstrate that the proposed method achieves a remarkable classification accuracy rate of 91.62%.
dc.identifier.citationYilmaz, E. ve Kılıkçıer, Ç. (2013). "Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree". Computational and Mathematical Methods in Medicine, 2013.
dc.identifier.issn1748-670X
dc.identifier.issn1748-6718
dc.identifier.pubmed24288574
dc.identifier.scopus2-s2.0-84888869975
dc.identifier.urihttps://doi.org/10.1155/2013/487179
dc.identifier.urihttps://www.hindawi.com/journals/cmmm/2013/487179/
dc.identifier.urihttp://hdl.handle.net/11452/27335
dc.identifier.volume2013
dc.identifier.wos000326751100001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherHindawi
dc.relation.journalComputational and Mathematical Methods in Medicine
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematical & computational biology
dc.subjectHeart-rate
dc.subjectClassification
dc.subjectPerformance
dc.subjectSystem
dc.subjectRisk
dc.subjectBinary trees
dc.subjectDecision trees
dc.subjectParticle swarm optimization (PSO)
dc.subject10-fold cross-validation
dc.subjectBinary decision trees
dc.subjectCardiotocogram
dc.subjectClassification accuracy
dc.subjectLeast squares support vector machines
dc.subjectOperation characteristic
dc.subjectSupport vector machines
dc.subject.emtreeArticle
dc.subject.emtreeCardiotocograph
dc.subject.emtreeCardiotocography
dc.subject.emtreeClassification algorithm
dc.subject.emtreeClinical evaluation
dc.subject.emtreeDecision tree
dc.subject.emtreeDiagnostic accuracy
dc.subject.emtreeFetus
dc.subject.emtreeFetus development
dc.subject.emtreeHuman
dc.subject.emtreeImage analysis
dc.subject.emtreeIntelligence
dc.subject.emtreeLearning algorithm
dc.subject.emtreeLeast square support vector machine
dc.subject.emtreeMachine learning
dc.subject.emtreeNonhuman
dc.subject.emtreeParameters
dc.subject.emtreeParticle swarm optimization
dc.subject.emtreeProcess optimization
dc.subject.emtreeReceiver operating characteristic
dc.subject.emtreeSupport vector machine
dc.subject.emtreeArtificial intelligence
dc.subject.emtreeCardiotocography
dc.subject.emtreeDecision support system
dc.subject.emtreeDecision tree
dc.subject.emtreeEvaluation study
dc.subject.emtreeFemale
dc.subject.emtreePregnancy
dc.subject.emtreeRegression analysis
dc.subject.emtreeStatistics and numerical data
dc.subject.emtreeSupport vector machine
dc.subject.emtreeValidation study
dc.subject.emtreeStatistics
dc.subject.meshArtificial intelligence
dc.subject.meshCardiotocography
dc.subject.meshDecision support systems, clinical
dc.subject.meshDecision trees
dc.subject.meshFemale
dc.subject.meshHumans
dc.subject.meshLeast-squares analysis
dc.subject.meshPregnancy
dc.subject.meshROC curve
dc.subject.meshSupport vector machines
dc.subject.scopusCardiotocography; Fetal Heart Rate; Pregnancy
dc.subject.wosMathematical & Computational Biology
dc.titleDetermination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü
local.indexed.atPubMed
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Yılmaz_Kılıkçıer_2013.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: