Yayın:
A new neural network-assisted hybrid chaotic hiking optimization algorithm for optimal design of engineering components

dc.contributor.authorÖzcan, Ahmet Remzi
dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorGÜRSES, DİLDAR
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridJCN-8328-2023
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2025-10-21T09:21:57Z
dc.date.issued2025-04-14
dc.description.abstractIn the era of artificial intelligence (AI), optimization and parametric studies of engineering and structural systems have become feasible tasks. AI and ML (machine learning) offer advantages over classical optimization techniques, which often face challenges such as slower convergence, difficulty handling multiobjective functions, and high computational time. Modern AI and ML techniques may not effectively address all critical design engineering problems despite these advancements. Nature-inspired algorithms based on physical phenomena in nature, human behavior, swarm intelligence, and evolutionary principles present a viable alternative for multidisciplinary design optimization challenges. This article explores the optimization of various engineering problems using a newly developed modified hiking optimization algorithm (HOA). The algorithm is inspired by human hiking techniques, such as hill climbing and hiker speed. The advantages of the modified HOA are compared with those of several famous algorithms from the literature, demonstrating superior results in terms of statistical measures.
dc.identifier.doi10.1515/mt-2024-0519
dc.identifier.endpage1078
dc.identifier.issn0025-5300
dc.identifier.issue6
dc.identifier.scopus2-s2.0-105002678537
dc.identifier.startpage1069
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0519
dc.identifier.urihttps://hdl.handle.net/11452/55982
dc.identifier.volume67
dc.identifier.wos001463525000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de gruyter gmbh
dc.relation.journalMaterials testing
dc.subjectMarıne predators algorıthm
dc.subjectParameter optımızatıon
dc.subjectGenetıc algorıthm
dc.subjectStructural desıgn
dc.subjectSearch algorıthm
dc.subjectTopology desıgn
dc.subjectHiking optimization algorithm
dc.subjectArtificial neural network
dc.subjectChaotic maps
dc.subjectReal-world applications
dc.subjectEngineering design
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science
dc.titleA new neural network-assisted hybrid chaotic hiking optimization algorithm for optimal design of engineering components
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication1af1d254-5397-464d-b47b-7ddcbaff8643
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery1af1d254-5397-464d-b47b-7ddcbaff8643

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Yildiz_vd_2025.pdf
Boyut:
1.33 MB
Format:
Adobe Portable Document Format