Yayın:
A comparison of regression methods for remote tracking of Parkinson's disease progression

dc.contributor.buuauthorEskidere, Ömer
dc.contributor.buuauthorErtaş, Figen
dc.contributor.buuauthorHanilci, Cemal
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentTeknik Bilimler Meslek Yüksekokulu
dc.contributor.departmentElektronik Mühendisliği Bölümü
dc.contributor.researcheridAAH-4188-2021
dc.contributor.researcheridS-4967-2016
dc.contributor.scopusid24723995200
dc.contributor.scopusid24724154500
dc.contributor.scopusid35781455400
dc.date.accessioned2021-12-02T05:51:19Z
dc.date.available2021-12-02T05:51:19Z
dc.date.issued2012-04
dc.description.abstractRemote patient tracking has recently gained increased attention, due to its lower cost and non-invasive nature. In this paper, the performance of Support Vector Machines (SVM), Least Square Support Vector Machines (LS-SVM), Multilayer Perceptron Neural Network (MLPNN), and General Regression Neural Network (GRNN) regression methods is studied in application to remote tracking of Parkinson's disease progression. Results indicate that the LS-SVM provides the best performance among the other three, and its performance is superior to that of the latest proposed regression method published in the literature.
dc.identifier.citationEskidere, Ö. vd. (2012). "A comparison of regression methods for remote tracking of Parkinson's disease progression". Expert Systems with Applications, 39(5), 5523-5528.
dc.identifier.doi10.1016/j.eswa.2011.11.067
dc.identifier.endpage5528
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue5
dc.identifier.scopus2-s2.0-84855886060
dc.identifier.startpage5523
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.11.067
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417411016137
dc.identifier.urihttp://hdl.handle.net/11452/22938
dc.identifier.volume39
dc.identifier.wos000301155300089
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherPergamon-Elsevier Science
dc.relation.journalExpert Systems with Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectEngineering
dc.subjectOperations research & management science
dc.subjectParkinson's disease
dc.subjectUnified parkinson's disease rating scale
dc.subjectLeast square support vector machine regression
dc.subjectNeural-networks
dc.subjectRatings
dc.subjectVoice
dc.subjectLeast squares approximations
dc.subjectNeural networks
dc.subjectNeurodegenerative diseases
dc.subjectRegression analysis
dc.subjectGeneral regression neural network
dc.subjectLeast square support vector machines
dc.subjectLower cost
dc.subjectMultilayer perceptron neural networks
dc.subjectNon-invasive
dc.subjectPatient tracking
dc.subjectRegression
dc.subjectRegression method
dc.subjectRemote tracking
dc.subjectSupport vector machines
dc.subject.scopusParkinson's Disease; Voice Disorders; Speech Signal
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosOperations research & management science
dc.titleA comparison of regression methods for remote tracking of Parkinson's disease progression
dc.typeArticle
dc.wos.quartileQ2 (Computer science, artificial intelligence)
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentTeknik Bilimler Meslek Yüksekokulu
local.contributor.departmentMühendislik Fakültesi/Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar