Yayın: A comparison of regression methods for remote tracking of Parkinson's disease progression
| dc.contributor.buuauthor | Eskidere, Ömer | |
| dc.contributor.buuauthor | Ertaş, Figen | |
| dc.contributor.buuauthor | Hanilci, Cemal | |
| dc.contributor.department | Mühendislik Fakültesi | |
| dc.contributor.department | Teknik Bilimler Meslek Yüksekokulu | |
| dc.contributor.department | Elektronik Mühendisliği Bölümü | |
| dc.contributor.researcherid | AAH-4188-2021 | |
| dc.contributor.researcherid | S-4967-2016 | |
| dc.contributor.scopusid | 24723995200 | |
| dc.contributor.scopusid | 24724154500 | |
| dc.contributor.scopusid | 35781455400 | |
| dc.date.accessioned | 2021-12-02T05:51:19Z | |
| dc.date.available | 2021-12-02T05:51:19Z | |
| dc.date.issued | 2012-04 | |
| dc.description.abstract | Remote patient tracking has recently gained increased attention, due to its lower cost and non-invasive nature. In this paper, the performance of Support Vector Machines (SVM), Least Square Support Vector Machines (LS-SVM), Multilayer Perceptron Neural Network (MLPNN), and General Regression Neural Network (GRNN) regression methods is studied in application to remote tracking of Parkinson's disease progression. Results indicate that the LS-SVM provides the best performance among the other three, and its performance is superior to that of the latest proposed regression method published in the literature. | |
| dc.identifier.citation | Eskidere, Ö. vd. (2012). "A comparison of regression methods for remote tracking of Parkinson's disease progression". Expert Systems with Applications, 39(5), 5523-5528. | |
| dc.identifier.doi | 10.1016/j.eswa.2011.11.067 | |
| dc.identifier.endpage | 5528 | |
| dc.identifier.issn | 0957-4174 | |
| dc.identifier.issn | 1873-6793 | |
| dc.identifier.issue | 5 | |
| dc.identifier.scopus | 2-s2.0-84855886060 | |
| dc.identifier.startpage | 5523 | |
| dc.identifier.uri | https://doi.org/10.1016/j.eswa.2011.11.067 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417411016137 | |
| dc.identifier.uri | http://hdl.handle.net/11452/22938 | |
| dc.identifier.volume | 39 | |
| dc.identifier.wos | 000301155300089 | |
| dc.indexed.wos | SCIE | |
| dc.language.iso | en | |
| dc.publisher | Pergamon-Elsevier Science | |
| dc.relation.journal | Expert Systems with Applications | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Computer science | |
| dc.subject | Engineering | |
| dc.subject | Operations research & management science | |
| dc.subject | Parkinson's disease | |
| dc.subject | Unified parkinson's disease rating scale | |
| dc.subject | Least square support vector machine regression | |
| dc.subject | Neural-networks | |
| dc.subject | Ratings | |
| dc.subject | Voice | |
| dc.subject | Least squares approximations | |
| dc.subject | Neural networks | |
| dc.subject | Neurodegenerative diseases | |
| dc.subject | Regression analysis | |
| dc.subject | General regression neural network | |
| dc.subject | Least square support vector machines | |
| dc.subject | Lower cost | |
| dc.subject | Multilayer perceptron neural networks | |
| dc.subject | Non-invasive | |
| dc.subject | Patient tracking | |
| dc.subject | Regression | |
| dc.subject | Regression method | |
| dc.subject | Remote tracking | |
| dc.subject | Support vector machines | |
| dc.subject.scopus | Parkinson's Disease; Voice Disorders; Speech Signal | |
| dc.subject.wos | Computer science, artificial intelligence | |
| dc.subject.wos | Engineering, electrical & electronic | |
| dc.subject.wos | Operations research & management science | |
| dc.title | A comparison of regression methods for remote tracking of Parkinson's disease progression | |
| dc.type | Article | |
| dc.wos.quartile | Q2 (Computer science, artificial intelligence) | |
| dc.wos.quartile | Q1 | |
| dspace.entity.type | Publication | |
| local.contributor.department | Teknik Bilimler Meslek Yüksekokulu | |
| local.contributor.department | Mühendislik Fakültesi/Elektronik Mühendisliği Bölümü | |
| local.indexed.at | Scopus | |
| local.indexed.at | WOS |
