Yayın:
Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers

dc.contributor.authorZhong C.
dc.contributor.authorLi G.
dc.contributor.authorMeng Z.
dc.contributor.authorLi H.
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorMirjalili S.
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.scopusid7102365439
dc.date.accessioned2025-05-12T22:30:20Z
dc.date.issued2025-02-01
dc.description.abstractThis work presents the starfish optimization algorithm (SFOA), a novel bio-inspired metaheuristic for solving optimization problems, which simulates behaviors of starfish, including exploration, preying, and regeneration. SFOA consists of two main phases of exploration and exploitation. The exploration phase mimics the explorative behavior of starfish by the hybrid search pattern of combining with the five-dimensional and unidimensional search patterns to increase the computational efficiency and ensure the search capacity. The exploitation phase simulates the preying and regeneration behaviors of starfish, with a two-directional search strategy and special movement, to ensure convergence in exploitation. This work validates SFOA’s performance on 65 benchmark functions from classical functions, CEC 2017 and CEC 2022 test suites, and compares with 100 different metaheuristic algorithms, including state-of-the-art optimizers, such as marine predators algorithm, water flow optimizer (WFO), LSHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. Statistical results from one-on-one comparisons demonstrate that the proposed SFOA outperforms 95 compared algorithms in accuracy and 97 algorithms in efficiency, which is only worse than WFO both in accuracy and efficiency. The scalability analysis also demonstrates that SFOA has the capacity to solve high-dimensional benchmark functions. Furthermore, ten real-world engineering optimization problems illustrate the effectiveness of SFOA to achieve global solutions and exhibit stable results. In conclusion, SFOA is promising for solving various optimization problems. The source code of SFOA is publicly available at: https://ww2.mathworks.cn/matlabcentral/fileexchange/173735-starfish-optimization-algorithm-sfoa.
dc.description.sponsorshipDreams Foundation of Jianghuai Advance Technology Center Foundation - 2023-ZM01X013
dc.description.sponsorshipHainan University - RZ2300002710
dc.description.sponsorshipNational Natural Science Foundation of China - 12402139, 12372195, 12372119
dc.description.sponsorshipDalian University of Technology - GZ24107
dc.description.sponsorshipAnhui Natural Science Funds for Distinguished Young Scholar - 2408085J007
dc.description.sponsorshipNational Key Research and Development Program of China - 2019YFA0706803
dc.description.sponsorshipNatural Science Foundation of Hainan Province - 524QN223
dc.identifier.doi10.1007/s00521-024-10694-1
dc.identifier.endpage3683
dc.identifier.issn0941-0643
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85212438299
dc.identifier.startpage3641
dc.identifier.urihttps://hdl.handle.net/11452/51332
dc.identifier.volume37
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.journalNeural Computing and Applications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectWater flow optimizer
dc.subjectStarfish optimization algorithm
dc.subjectParticle swarm optimization
dc.subjectOptimization
dc.subjectMetaheuristic
dc.subjectHigh-performance
dc.subject.scopusMetaheuristic Algorithms for Optimization Challenges
dc.titleStarfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar