Publication:
Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface

dc.contributor.buuauthorİşman, Mustafa Kemal
dc.contributor.buuauthorPulat, Erhan
dc.contributor.buuauthorEtemoğlu, Akın Burak
dc.contributor.buuauthorCan, Muhiddin
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0001-8022-1185
dc.contributor.researcheridABE-9423-2020
dc.contributor.scopusid23392727300
dc.contributor.scopusid23098080300
dc.contributor.scopusid8221881000
dc.contributor.scopusid7006114954
dc.date.accessioned2021-11-26T10:15:54Z
dc.date.available2021-11-26T10:15:54Z
dc.date.issued2008
dc.description.abstractIn this study, heat transfer characteristics in the single slot jet impinging cooling process of constant heat flux surface are numerically investigated. It is assumed that the flow is turbulent, two-dimensional and in steady state. Governing equations are solved by using Galerkin finite element method by employing five two-equation turbulence models based on Reynolds-averaged Navier-Stokes (RANS) approach. Although the most satisfactory results are obtained with nonlinear algebraic stress model of Shih-Zhu-Lumley in stagnation region, overall performance of RNG and standard k- models are better in comparison with other models by considering entire region. Subsequent computations are performed with RNG and standard k- models for nozzle to plate spacing and Reynolds numbers in the ranges of 4 <= zlD(h)<= 10 and 4000 <= Re <= 12000, respectively. Also, inlet turbulence intensity and heat flux boundary conditions effects on heat transfer are investigated. Property variation and buoyancy effects are considered to decrease possible discrepancy with experimental results and capture the turbulence intensity effects more accurately. Acceptable agreement with the measured values in published literature are obtained and discussed.
dc.identifier.citationİşman, M.K. vd. (2008). ''Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface''. Numerical Heat Transfer Part A - Applications, 53(10), 1109-1132.
dc.identifier.endpage1132
dc.identifier.issn1040-7782
dc.identifier.issue10
dc.identifier.scopus2-s2.0-38049146101
dc.identifier.startpage1109
dc.identifier.urihttps://doi.org/10.1080/10407780701790078
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/10407780701790078
dc.identifier.urihttp://hdl.handle.net/11452/22824
dc.identifier.volume53
dc.identifier.wos000252352300006
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.journalNumerical Heat Transfer Part A - Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLow-reynolds-number
dc.subjectK-epsilon models
dc.subjectFlat-plate
dc.subjectAir-jet
dc.subjectWall-function
dc.subjectSlot jet
dc.subjectTemperature difference
dc.subjectSimulation
dc.subjectImpingement
dc.subjectThermodynamics
dc.subjectMechanics
dc.subjectShear flows
dc.subjectCooling
dc.subjectHeat flux
dc.subjectNavier stokes equations
dc.subjectNumerical methods
dc.subjectReynolds number
dc.subjectTurbulent flow
dc.subjectConstant heat flux surface
dc.subjectProperty variation
dc.subjectTurbulence intensity effects
dc.subjectTurbulent impinging jet cooling
dc.subjectJets
dc.subject.scopusJet Impingement; Heat Transfer; Swirling
dc.subject.wosThermodynamics
dc.subject.wosMechanics
dc.titleNumerical investigation of turbulent impinging jet cooling of a constant heat flux surface
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: