Yayın:
Forecasting daily total pollen concentrations on a global scale

dc.contributor.authorMakra, Laszlo
dc.contributor.authorCoviello, Luca
dc.contributor.authorGobbi, Andrea
dc.contributor.authorJurman, Giuseppe
dc.contributor.authorFurlanello, Cesare
dc.contributor.authorBrunato, Mauro
dc.contributor.authorZiska, Lewis H.
dc.contributor.authorHess, Jeremy J.
dc.contributor.authorDamialis, Athanasios
dc.contributor.authorGarcia, Maria Pilar Plaza
dc.contributor.authorTusnady, Gabor
dc.contributor.authorCzibolya, Lilit
dc.contributor.authorIhasz, Istvan
dc.contributor.authorDeak, Aron Jozsef
dc.contributor.authorMiko, Edit
dc.contributor.authorDorner, Zita
dc.contributor.authorHarry, Susan K.
dc.contributor.authorBruffaerts, Nicolas
dc.contributor.authorPackeu, Ann
dc.contributor.authorSaarto, Annika
dc.contributor.authorToiviainen, Linnea
dc.contributor.authorLouna-Korteniemi, Maria
dc.contributor.authorPatsi, Sanna
dc.contributor.authorThibaudon, Michel
dc.contributor.authorOliver, Gilles
dc.contributor.authorCharalampopoulos, Athanasios
dc.contributor.authorVokou, Despoina
dc.contributor.authorPrzedpelska-Wasowicz, Ewa Maria
dc.contributor.authorGudjohnsen, Elly Renee
dc.contributor.authorBonini, Maira
dc.contributor.authorÇelenk, Sevcan
dc.contributor.authorÖzaslan, Cumali
dc.contributor.authorOh, Jae-Won
dc.contributor.authorSullivan, Krista
dc.contributor.authorFord, Linda
dc.contributor.authorKelly, Michelle
dc.contributor.authorLevetin, Estelle
dc.contributor.authorMyszkowska, Dorota
dc.contributor.authorSeverova, Elena
dc.contributor.authorGehrig, Regula
dc.contributor.authorCalderon-Ezquerro, Maria Del Carmen
dc.contributor.authorGuerra, Cesar Guerrero
dc.contributor.authorLeiva-Guzman, Manuel Andres
dc.contributor.authorRamon, German Dario
dc.contributor.authorBarrionuevo, Laura Beatriz
dc.contributor.authorPeter, Jonny
dc.contributor.authorBerman, Dilys
dc.contributor.authorKatelaris, Connie H.
dc.contributor.authorDavies, Janet M.
dc.contributor.authorBurton, Pamela
dc.contributor.authorBeggs, Paul J.
dc.contributor.authorVergamini, Sandra Maria
dc.contributor.authorValencia-Barrera, Rosa Maria
dc.contributor.authorTraidl-Hoffmann, Claudia
dc.contributor.buuauthorÇELENK, SEVCAN
dc.contributor.departmentFen-Edebiyat Fakültesi
dc.contributor.departmentBiyoloji Bölümü
dc.contributor.orcid0000-0003-4925-8902
dc.contributor.researcheridK-2981-2012
dc.date.accessioned2025-01-16T05:22:14Z
dc.date.available2025-01-16T05:22:14Z
dc.date.issued2024-07-12
dc.description.abstractBackgroundThere is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts.MethodsThe study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values.ResultsThe best pollen forecasts include Mexico City (R2(DL_7) approximate to .7), and Santiago (R2(DL_7) approximate to .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) approximate to .4) and Seoul (R2(DL_7) approximate to .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan.ConclusionsThis new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.CatBoost is a preferable model for short-term forecasts, while Deep Learning is for longer ones, but there is no definite answer to what the better model is for every day or city. Past pollen trends are strong indicators of future pollen concentrations. CatBoost can be used to determine the importance of environmental variables in forecasting daily total pollen concentration. Abbreviations: 2mT, 2 m temperature; CB, CatBoost; DL, Deep Learning; DOY, day of the year; ERA5, the fifth generation ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric reanalysis dataset; pevap, potential evapotranspiration; st, soil temperature.image
dc.description.sponsorshipEU- COST Action ADOPT - CA18226
dc.identifier.doi10.1111/all.16227
dc.identifier.endpage2185
dc.identifier.issn0105-4538
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85198521687
dc.identifier.startpage2173
dc.identifier.urihttps://doi.org/10.1111/all.16227
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/all.16227
dc.identifier.urihttps://hdl.handle.net/11452/49460
dc.identifier.volume79
dc.identifier.wos001269195300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalAllergy
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAirborne pollen
dc.subjectAdmissions
dc.subjectAustralia
dc.subjectCounts
dc.subjectAsthma
dc.subjectAllergy
dc.subjectArtificial intelligence
dc.subjectEnvironmental variables
dc.subjectFeature importance cluster
dc.subjectPollen forecast
dc.subjectAllergy
dc.subjectImmunology
dc.titleForecasting daily total pollen concentrations on a global scale
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen-Edebiyat Fakültesi/Biyoloji Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication287f5285-8e64-402e-a481-36aff1c24232
relation.isAuthorOfPublication.latestForDiscovery287f5285-8e64-402e-a481-36aff1c24232

Dosyalar