Publication:
FANTIS: A fuzzy automatic new topic identification system

dc.contributor.buuauthorÇavdur, Fatih
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0001-8054-5606
dc.contributor.researcheridAAG-9471-2021
dc.contributor.scopusid8419687000
dc.date.accessioned2024-01-29T09:55:58Z
dc.date.available2024-01-29T09:55:58Z
dc.date.issued2014-03
dc.description.abstractThe purpose of this study is to present a Fuzzy Automatic New Topic Identification System (FANTIS) to estimate topic changes in search engine transaction logs. Sample datasets of two search engines are used for the illustration of the approach. A two-input, one-output and three-rule fuzzy system is designed using the general topic continuation and shift distribution information in the datasets. The system is then used for automatic new topic identification. Our findings show that FANTIS can successfully be used as an automatic new topic identification tool. Compared to the other studies of automatic new topic identification, in addition to its satisfactory performance, FANTIS stands out as a flexible and simple approach since (i) it can be easily modified and (ii) it does not require a formal training phase. The proposed approach contributes to the solution of the automatic new topic identification, which constitutes one of the main problems in information retrieval that need to be solved for achieving the goal of personalized search engines to yield more efficient search sessions.
dc.identifier.citationÇavdur, F. (2014). "FANTIS: A fuzzy automatic new topic identification system". International Journal of Fuzzy Systems, 16(1), 1-8.
dc.identifier.eissn2199-3211
dc.identifier.endpage8
dc.identifier.issn1562-2479
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84899005470
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/11452/39362
dc.identifier.volume16
dc.identifier.wos000334135300001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.journalInternational Journal of Fuzzy Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAutomatic new topic identification
dc.subjectQuery clustering
dc.subjectFuzzy logic
dc.subjectNeural-network applications
dc.subjectWeb
dc.subjectInformation retrieval
dc.subjectQueries
dc.subjectTrends
dc.subjectLife
dc.subjectAutomation & control systems
dc.subjectSearch engines
dc.subjectAutomatic new topic identification
dc.subjectTransaction log
dc.subjectFormal training
dc.subjectTopic identification
dc.subjectFuzzy logic
dc.subjectSimple approach
dc.subjectIdentification tools
dc.subjectSample dataset
dc.subjectPerformance
dc.subjectQuery clustering
dc.subjectFuzzy logic
dc.subjectComputer science
dc.subject.otherComputer science
dc.subject.scopusQuery Reformulation; Image Indexing; Information Retrieval
dc.subject.wosAutomation & control systems
dc.subject.wosComputer science, information systems
dc.subject.wosComputer science, artificial intelligence
dc.titleFANTIS: A fuzzy automatic new topic identification system
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: