Yayın: On the number of solutions of the diophantine equation x2 + 2a - pb = y4
| dc.contributor.author | Zhu H. | |
| dc.contributor.author | Le M. | |
| dc.contributor.author | Soydan G. | |
| dc.contributor.buuauthor | SOYDAN, GÖKHAN | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Ana Bilim Dalı | |
| dc.contributor.scopusid | 23566953200 | |
| dc.date.accessioned | 2025-08-06T23:17:45Z | |
| dc.date.issued | 2015-01-01 | |
| dc.description.abstract | Let p be a fixed odd prime. In this paper, we study the integer solutions (x, y, a, b) of the equation x2 +2a · pb = y4; gcd(x, y) = 1, x > 0; y > 0; a ≥ 0; b ≥ 0, and we derive upper bounds for the number of such solutions.AMS 2010 Subject Classifcation: 11D61. | |
| dc.identifier.endpage | 263 | |
| dc.identifier.issn | 1582-3067 | |
| dc.identifier.issue | 3 | |
| dc.identifier.scopus | 2-s2.0-84971317601 | |
| dc.identifier.startpage | 255 | |
| dc.identifier.uri | https://hdl.handle.net/11452/53770 | |
| dc.identifier.volume | 17 | |
| dc.indexed.scopus | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Editura Academiei Romane | |
| dc.relation.journal | Mathematical Reports | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Lebesgue-nagell equation | |
| dc.subject | Exponential diophantine equation | |
| dc.subject | Classfi-cation of solutions | |
| dc.title | On the number of solutions of the diophantine equation x2 + 2a - pb = y4 | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 356f7af9-3f0f-4c82-8733-d98627634647 | |
| relation.isAuthorOfPublication.latestForDiscovery | 356f7af9-3f0f-4c82-8733-d98627634647 |
