Yayın:
On the number of solutions of the diophantine equation x2 + 2a - pb = y4

dc.contributor.authorZhu H.
dc.contributor.authorLe M.
dc.contributor.authorSoydan G.
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.scopusid23566953200
dc.date.accessioned2025-08-06T23:17:45Z
dc.date.issued2015-01-01
dc.description.abstractLet p be a fixed odd prime. In this paper, we study the integer solutions (x, y, a, b) of the equation x2 +2a · pb = y4; gcd(x, y) = 1, x > 0; y > 0; a ≥ 0; b ≥ 0, and we derive upper bounds for the number of such solutions.AMS 2010 Subject Classifcation: 11D61.
dc.identifier.endpage 263
dc.identifier.issn1582-3067
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84971317601
dc.identifier.startpage255
dc.identifier.urihttps://hdl.handle.net/11452/53770
dc.identifier.volume17
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherEditura Academiei Romane
dc.relation.journalMathematical Reports
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLebesgue-nagell equation
dc.subjectExponential diophantine equation
dc.subjectClassfi-cation of solutions
dc.titleOn the number of solutions of the diophantine equation x2 + 2a - pb = y4
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Dosyalar