Yayın:
Prediction of hysteresis loop in magnetic cores using neural network and genetic algorithm

dc.contributor.buuauthorKüçük, İlker
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.scopusid6602910810
dc.date.accessioned2021-10-01T10:46:54Z
dc.date.available2021-10-01T10:46:54Z
dc.date.issued2006
dc.description.abstractThe dynamic hysteresis loops of a range of soft magnetic toroidal wound cores made from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge strip have been measured over a wide frequency range (50-1000 Hz). A dynamic hysteresis loop prediction model using neural network and genetic algorithm from measurements has been developed. Input parameters include the geometrical dimensions of wound cores, peak magnetic induction, strip thickness and magnetizing frequency. The developed neural network for the estimation of hysteresis loops has been also compared with the dynamic Preisach model and Energetic model. The results show that the neural network model trained by genetic algorithm has an acceptable prediction capability for hysteresis loops of toroidal cores.
dc.identifier.citationKüçük, İ. (2006). ''Prediction of hysteresis loop in magnetic cores using neural network and genetic algorithm''. Journal of Magnetism and Magnetic Materials, 305(2), 423-427.
dc.identifier.doi10.1016/j.jmmm.2006.01.137
dc.identifier.endpage427
dc.identifier.issn0304-8853
dc.identifier.issue2
dc.identifier.scopus2-s2.0-33747799619
dc.identifier.startpage423
dc.identifier.urihttps://doi.org/10.1016/j.jmmm.2006.01.137
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0304885306001636
dc.identifier.urihttp://hdl.handle.net/11452/22179
dc.identifier.volume305
dc.identifier.wos000240831600026
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.journalJournal of Magnetism and Magnetic Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectGenetic algorithm
dc.subjectNeural network
dc.subjectToroidal thin gauge cores
dc.subjectDynamic hysteresis model
dc.subjectModel
dc.subjectToroidal cores
dc.subjectParameter estimation
dc.subjectNeural networks
dc.subjectMagnetic cores
dc.subjectGeometry
dc.subjectGenetic algorithms
dc.subjectDynamic hysteresis model
dc.subjectHysteresis
dc.subject.scopusPreisach Model; Magnetic Hysteresis; Hysteresis Loops
dc.subject.wosMaterials science, multidisciplinary
dc.subject.wosPhysics, condensed matter
dc.titlePrediction of hysteresis loop in magnetic cores using neural network and genetic algorithm
dc.typeArticle
dc.wos.quartileQ2 (Materials science, multidisciplinary)
dc.wos.quartileQ3 (Physics, condensed matter)
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama