Yayın: On the hyperbolic Klingenberg plane classes constructed by deleting subplanes
Tarih
Kurum Yazarları
Çelik, Basri
Yazarlar
Danışman
Dil
Türü
Yayıncı:
Springer
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
In this study we investigate the structures constructed by deleting a subplane from a projective Klingenberg plane. If the superplane and the subplane are infinite, then it can be easily seen that the remaining structure satisfies the conditions of a hyperbolic Klingenberg plane. In this study we show that the remaining structure is the hyperbolic Klingenberg plane if the inequality r >= m(2) + m + 1 + root m(2) + m + 2 holds when the superplane and the subplane are finite and t, r and t, m are their parameters, respectively.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Mathematics, Hyperbolic planes, Projective planes, Projective Klingenberg planes, Finite rings, Local rings
Alıntı
Çelik, B. (2013). “On the hyperbolic Klingenberg plane classes constructed by deleting subplanes”. Journal of Inequalities and Applications, 2013.
