Yayın:
Principal component based classification for text-independent speaker identification

dc.contributor.buuauthorHanilçi, Cemal
dc.contributor.buuauthorErtaş, Figen
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.researcheridS-4967-2016
dc.contributor.researcheridAAH-4188-2021
dc.contributor.scopusid35781455400
dc.contributor.scopusid24724154500
dc.date.accessioned2022-09-19T10:27:11Z
dc.date.available2022-09-19T10:27:11Z
dc.date.issued2010
dc.descriptionBu çalışma, 02-04 Eylül 2010 tarihleri arasında Famagusta[Kuzey Kıbrıs Türk Cumhuriyeti]’da düzenlenen 5. International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control’da bildiri olarak sunulmuştur.
dc.description.abstractClassification based on Principal Component analysis has recently appeared in the literature in application to text-independent speaker identification. However, results have been reported for only clean speech data. In this paper, we evaluate the performance of principal component classifier for text-independent speaker identification on telephone speech. We then improve its identification performance using a Vector Quantization classifier in combination, through fusion of classifier scores. An identification rate of 78.27% has been obtained on the NTIMIT database, which is well above the best identification rate ever reported in the literature obtained by using only one type of feature set.
dc.identifier.citationHanilçi, C. ve Ertaş, F. (2010). "Principal component based classification for text-independent speaker identification". ICSCCW 2009 - 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 39-42.
dc.identifier.doi10.1109/ICSCCW.2009.5379490
dc.identifier.endpage42
dc.identifier.scopus2-s2.0-77950483266
dc.identifier.startpage39
dc.identifier.urihttps://doi.org/10.1109/ICSCCW.2009.5379490
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/5379490
dc.identifier.urihttp://hdl.handle.net/11452/28798
dc.identifier.wos000287219100011
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherIEEE
dc.relation.journal2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectEngineering
dc.subjectClassifiers
dc.subjectIdentification (control systems)
dc.subjectIndependent component analysis
dc.subjectLoudspeakers
dc.subjectSoft computing
dc.subjectSpeech recognition
dc.subjectSystems analysis
dc.subjectText processing
dc.subjectVector quantization
dc.subjectClean speech
dc.subjectFeature sets
dc.subjectFusion of classifiers
dc.subjectIdentification rates
dc.subjectPrincipal component classifiers
dc.subjectPrincipal components
dc.subjectTelephone speech
dc.subjectText-independent speaker identification
dc.subjectPrincipal component analysis
dc.subject.scopusSpeech Recognition; Language Recognition; Utterance
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosComputer science, software engineering
dc.subject.wosEngineering, electrical & electronic
dc.titlePrincipal component based classification for text-independent speaker identification
dc.typeconferenceObject
dc.type.subtypeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama