Yayın:
On the Ternary Purely Exponential Diophantine Equation (ak)x + (bk)y = ((a + b)k)z for Prime Powers a and b

dc.contributor.authorLe M.
dc.contributor.authorSoydan G.
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.scopusid23566953200
dc.date.accessioned2025-08-06T22:40:31Z
dc.date.issued2023-01-01
dc.description.abstractLet k be a positive integer, and let a, b be coprime positive integers with a, b > 1. In this paper, using a combination of some elementary number theory techniques with classical results on the Nagell-Ljunggren equation, the Catalan equation, and some new properties of the Lucas sequence, we prove that if k > 1 and a, b > 2 are both prime powers, then the equation (ak)<sup>x</sup> + (bk)<sup>y</sup> = ((a + b)k)<sup>z</sup> has only one positive integer solution: namely, (x, y, z) = (1, 1, 1). This proves some cases of a conjecture of Yuan and Han.
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85169074892
dc.identifier.urihttps://hdl.handle.net/11452/53363
dc.identifier.volume26
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherUniversity of Waterloo
dc.relation.journalJournal of Integer Sequences
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectternary purely exponential Diophantine equation
dc.subjectprime power base
dc.subjectNagell-Ljunggren equation
dc.subjectLucas sequence
dc.subjectelementary number theory method
dc.subjectCatalan equation
dc.subject.scopusDiophantine Equations and Fibonacci Sequences Insights
dc.titleOn the Ternary Purely Exponential Diophantine Equation (ak)x + (bk)y = ((a + b)k)z for Prime Powers a and b
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Dosyalar