Yayın: On the Ternary Purely Exponential Diophantine Equation (ak)x + (bk)y = ((a + b)k)z for Prime Powers a and b
| dc.contributor.author | Le M. | |
| dc.contributor.author | Soydan G. | |
| dc.contributor.buuauthor | SOYDAN, GÖKHAN | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Ana Bilim Dalı | |
| dc.contributor.scopusid | 23566953200 | |
| dc.date.accessioned | 2025-08-06T22:40:31Z | |
| dc.date.issued | 2023-01-01 | |
| dc.description.abstract | Let k be a positive integer, and let a, b be coprime positive integers with a, b > 1. In this paper, using a combination of some elementary number theory techniques with classical results on the Nagell-Ljunggren equation, the Catalan equation, and some new properties of the Lucas sequence, we prove that if k > 1 and a, b > 2 are both prime powers, then the equation (ak)<sup>x</sup> + (bk)<sup>y</sup> = ((a + b)k)<sup>z</sup> has only one positive integer solution: namely, (x, y, z) = (1, 1, 1). This proves some cases of a conjecture of Yuan and Han. | |
| dc.identifier.issue | 7 | |
| dc.identifier.scopus | 2-s2.0-85169074892 | |
| dc.identifier.uri | https://hdl.handle.net/11452/53363 | |
| dc.identifier.volume | 26 | |
| dc.indexed.scopus | Scopus | |
| dc.language.iso | en | |
| dc.publisher | University of Waterloo | |
| dc.relation.journal | Journal of Integer Sequences | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | ternary purely exponential Diophantine equation | |
| dc.subject | prime power base | |
| dc.subject | Nagell-Ljunggren equation | |
| dc.subject | Lucas sequence | |
| dc.subject | elementary number theory method | |
| dc.subject | Catalan equation | |
| dc.subject.scopus | Diophantine Equations and Fibonacci Sequences Insights | |
| dc.title | On the Ternary Purely Exponential Diophantine Equation (ak)x + (bk)y = ((a + b)k)z for Prime Powers a and b | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 356f7af9-3f0f-4c82-8733-d98627634647 | |
| relation.isAuthorOfPublication.latestForDiscovery | 356f7af9-3f0f-4c82-8733-d98627634647 |
