Publication:
Prediction of power losses in transformer cores using feed forward neural network and genetic algorithm

dc.contributor.buuauthorKüçük, İlker
dc.contributor.buuauthorDerebaşı, Naim
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.orcid0000-0003-2546-0022
dc.contributor.researcheridAAI-2254-2021
dc.contributor.scopusid6602910810
dc.contributor.scopusid11540936300
dc.date.accessioned2021-11-29T06:35:02Z
dc.date.available2021-11-29T06:35:02Z
dc.date.issued2006-08
dc.description.abstractA mathematical model for core losses was improved for frequency and geometrical effects using experimental data obtained from toroidal wound cores. The improved mathematical model was applied to the other soft magnetic materials and optimizes its parameters with the aim of neural networks. A 6-neuron input layer, 9-neuron output layer model with two hidden layers were developed. While the input neurons were geometrical parameters, magnetising frequency, magnetic induction and resistivity of the soft magnetic materials, output neurons were correlation coefficients and the power loss. The network has been trained by the genetic algorithm. The linear correlation coefficient was found to be 99%.
dc.identifier.citationKüçük, İ. ve Derebaşı, N. (2006). ''Prediction of power losses in transformer cores using feed forward neural network and genetic algorithm''. Measurement: Journal of the International Measurement Confederation, 39(7), 605-611.
dc.identifier.endpage611
dc.identifier.issn0263-2241
dc.identifier.issue7
dc.identifier.scopus2-s2.0-33745210992
dc.identifier.startpage605
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2006.02.001
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0263224106000212
dc.identifier.urihttp://hdl.handle.net/11452/22837
dc.identifier.volume39
dc.identifier.wos000239124600004
dc.indexed.scopusScopus
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.journalMeasurement: Journal of the International Measurement Confederation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEngineering
dc.subjectInstruments & instrumentation
dc.subjectToroidal magnetic cores
dc.subjectPower loss
dc.subjectGenetic algorithm
dc.subjectArtificial neural network
dc.subjectOptimization
dc.subjectNeural networks
dc.subjectMathematical models
dc.subjectMagnetization
dc.subjectGenetic algorithms
dc.subjectComputational geometry
dc.subjectToroidal magnetic cores
dc.subjectPower loss
dc.subjectGeometrical effects
dc.subjectElectric transformers
dc.subjectFrequency
dc.subjectMagnetic-properties
dc.subjectToroidal cores
dc.subject.scopusSilicon Steel; Soft Magnetic Materials; Induction Motors
dc.subject.wosEngineering, multidisciplinary
dc.subject.wosInstruments & instrumentation
dc.titlePrediction of power losses in transformer cores using feed forward neural network and genetic algorithm
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Bölümü
local.indexed.atWOS
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: