Yayın:
Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

dc.contributor.authorKoçak, Yılmaz
dc.contributor.authorGülbandılar, Eyyüp
dc.contributor.buuauthorÖzcan, Giyasettin
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0000-0002-1166-5919
dc.contributor.scopusid15770103700
dc.date.accessioned2023-01-11T12:47:48Z
dc.date.available2023-01-11T12:47:48Z
dc.date.issued2016-12-26
dc.description.abstractThe aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.
dc.description.sponsorshipDüzce Üniversitesi - 2011.03.HD.011
dc.identifier.citationÖzcan, G. vd. (2017). ''Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models''. Computers and Concrete, 19(3), 275-282.
dc.identifier.doi10.12989/cac.2017.19.3.275
dc.identifier.endpage282
dc.identifier.issn1598-8198
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85015845396
dc.identifier.startpage275
dc.identifier.urihttps://doi.org/10.12989/cac.2017.19.3.275
dc.identifier.urihttp://koreascience.or.kr/article/JAKO201713842132849.page
dc.identifier.uri1598-818X
dc.identifier.urihttp://hdl.handle.net/11452/30403
dc.identifier.volume19
dc.identifier.wos000399861700006
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherTechno-Press
dc.relation.collaborationYurt içi
dc.relation.journalComputers and Concrete
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectConstruction & building technology
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectAda boost
dc.subjectBayes classifier models
dc.subjectBlast furnace slag
dc.subjectCompressive strength
dc.subjectRandom forest
dc.subjectSVM
dc.subjectWaste tire rubber powder
dc.subjectBlast-furnace slag
dc.subjectArtificial neural-network
dc.subjectWaste tire rubber
dc.subjectMechanical-properties
dc.subjectFly-ash
dc.subjectPortland-cement
dc.subjectMarble dust
dc.subjectConcrete
dc.subjectPrediction
dc.subjectFuzzy
dc.subjectAda (programming language)
dc.subjectArtificial intelligence
dc.subjectBlast furnaces
dc.subjectCements
dc.subjectDecision trees
dc.subjectLearning algorithms
dc.subjectLearning systems
dc.subjectMortar
dc.subjectPortland cement
dc.subjectPowders
dc.subjectRubber
dc.subjectSlags
dc.subjectStrength of materials
dc.subjectCompressive strength
dc.subjectBayes classifier
dc.subjectInput parameter
dc.subjectMachine learning methods
dc.subjectMachine learning models
dc.subjectOutput parameters
dc.subjectRandom forests
dc.subjectTraining and testing
dc.subjectWaste tire rubber powders
dc.subject.scopusCompressive Strength; High Performance Concrete; Prediction
dc.subject.wosComputer science, interdisciplinary applications
dc.subject.wosConstruction & building technology
dc.subject.wosEngineering
dc.subject.wosCivil
dc.subject.wosMaterials science, characterization & testing
dc.titleEstimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models
dc.typeArticle
dc.wos.quartileQ2
dc.wos.quartileQ3 (Computer science, interdisciplinary applications)
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama