Yayın:
Conchoidal surfaces in euclidean 3-space satisfying ∆xi = λi xi

dc.contributor.authorSokur, Betül Bulca
dc.contributor.authorDirim, Tuğçe
dc.contributor.buuauthorBULCA SOKUR, BETÜL
dc.contributor.buuauthorDirim, Tuğçe
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0001-5861-0184
dc.contributor.scopusid35226209600
dc.contributor.scopusid58666870500
dc.date.accessioned2025-05-13T06:19:37Z
dc.date.issued2023-01-01
dc.description.abstractIn this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition ∆xi = λi xi where ∆ denotes the Laplace operator with respect to the first fundamental form. We obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have give some special cases for the classification theorem by given the radius function r(u, v) with respect to the parameter u and v.
dc.identifier.doi10.32323/ujma.1330866
dc.identifier.endpage121
dc.identifier.issn26199653
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85175077995
dc.identifier.startpage114
dc.identifier.urihttps://hdl.handle.net/11452/51536
dc.identifier.urihttps://dergipark.org.tr/en/download/article-file/3278980
dc.identifier.volume6
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherEmrah Evren KARA
dc.relation.journalUniversal Journal of Mathematics and Applications
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMean curvature
dc.subjectLaplace operator
dc.subjectGaussian curvature
dc.subjectConchoid
dc.subject.scopusPythagorean; Hodograph; Hermite Interpolation
dc.titleConchoidal surfaces in euclidean 3-space satisfying ∆xi = λi xi
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus
relation.isAuthorOfPublication45c31521-1d02-466d-902b-10f1e471b1d8
relation.isAuthorOfPublication.latestForDiscovery45c31521-1d02-466d-902b-10f1e471b1d8

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Sokur_Dirim_2023.pdf
Boyut:
245.07 KB
Format:
Adobe Portable Document Format