Yayın:
Artificial neural networks-based multi-objective optimization of immersion cooling battery thermal management system using hammersley sampling method

dc.contributor.authorDönmez, Muhammed
dc.contributor.authorKaramangil, Mehmet İhsan
dc.contributor.buuauthorDÖNMEZ, MUHAMMED
dc.contributor.buuauthorKARAMANGİL, MEHMET İHSAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Bölümü
dc.contributor.orcid0000-0002-9046-4989
dc.contributor.researcheridJCN-7571-2023
dc.contributor.researcheridAAH-8619-2019
dc.date.accessioned2025-01-15T12:32:44Z
dc.date.available2025-01-15T12:32:44Z
dc.date.issued2024-11-19
dc.description.abstractThis research optimizes lithium-ion battery module cooling through immersion cooling, addressing pressure drop and after discharge average cell temperature. Using the Hammersley method, various module designs are generated. Multi-objective optimization, using ANN-based multi objective genetic algorithms, is conducted on a 16S1P configuration at 4C discharge and 0.008 kg/s. The optimized design achieved an 83 % average cell temperature reduction at a 4C discharge rate and 0.008 kg/s compared to an uncooled battery cell, while also reducing the pressure drop by 88.6 % relative to the base design. The pressure drop is approximately 12 Pa at a mass flow rate of 0.02 kg/s, with an average cell temperature of 3.13 degrees C in the optimized design. This represents a 68.4 % reduction in pressure drop compared to the base design, which experiences approximately 40 Pa at a lower mass flow rate of 0.008 kg/s. Additionally, the optimized design achieves a 20.8 % reduction in average cell temperature, lowering it from 3.95 degrees C in the base design to 3.13 degrees C. These findings highlight improved pressure and thermal performance in lithium-ion battery modules, with implications for enhanced design and operation. Future work could extend these optimizations to various battery chemistries and conditions.
dc.identifier.doi10.1016/j.csite.2024.105509
dc.identifier.issn2214-157X
dc.identifier.scopus2-s2.0-85209238012
dc.identifier.urihttps://doi.org/10.1016/j.csite.2024.105509
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2214157X24015405
dc.identifier.urihttps://hdl.handle.net/11452/49454
dc.identifier.volume64
dc.identifier.wos001360725800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.bapFGA-2023-1314
dc.relation.journalCase Studies in Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectIon batteries
dc.subjectOptimization
dc.subjectBattery thermal management
dc.subjectImmersion cooling
dc.subjectArtificial neural network
dc.subjectHammersley sampling method
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectThermodynamics
dc.titleArtificial neural networks-based multi-objective optimization of immersion cooling battery thermal management system using hammersley sampling method
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication6c72069c-b670-443b-a453-82bc92884d21
relation.isAuthorOfPublication28dc729c-b0e6-44bb-b6e7-3e4cc105d73d
relation.isAuthorOfPublication.latestForDiscovery6c72069c-b670-443b-a453-82bc92884d21

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Donmez_Karamangıl_2024.pdf
Boyut:
10.42 MB
Format:
Adobe Portable Document Format