Yayın: Artificial neural networks-based multi-objective optimization of immersion cooling battery thermal management system using hammersley sampling method
| dc.contributor.author | Dönmez, Muhammed | |
| dc.contributor.author | Karamangil, Mehmet İhsan | |
| dc.contributor.buuauthor | DÖNMEZ, MUHAMMED | |
| dc.contributor.buuauthor | KARAMANGİL, MEHMET İHSAN | |
| dc.contributor.department | Mühendislik Fakültesi | |
| dc.contributor.department | Otomotiv Mühendisliği Bölümü | |
| dc.contributor.orcid | 0000-0002-9046-4989 | |
| dc.contributor.researcherid | JCN-7571-2023 | |
| dc.contributor.researcherid | AAH-8619-2019 | |
| dc.date.accessioned | 2025-01-15T12:32:44Z | |
| dc.date.available | 2025-01-15T12:32:44Z | |
| dc.date.issued | 2024-11-19 | |
| dc.description.abstract | This research optimizes lithium-ion battery module cooling through immersion cooling, addressing pressure drop and after discharge average cell temperature. Using the Hammersley method, various module designs are generated. Multi-objective optimization, using ANN-based multi objective genetic algorithms, is conducted on a 16S1P configuration at 4C discharge and 0.008 kg/s. The optimized design achieved an 83 % average cell temperature reduction at a 4C discharge rate and 0.008 kg/s compared to an uncooled battery cell, while also reducing the pressure drop by 88.6 % relative to the base design. The pressure drop is approximately 12 Pa at a mass flow rate of 0.02 kg/s, with an average cell temperature of 3.13 degrees C in the optimized design. This represents a 68.4 % reduction in pressure drop compared to the base design, which experiences approximately 40 Pa at a lower mass flow rate of 0.008 kg/s. Additionally, the optimized design achieves a 20.8 % reduction in average cell temperature, lowering it from 3.95 degrees C in the base design to 3.13 degrees C. These findings highlight improved pressure and thermal performance in lithium-ion battery modules, with implications for enhanced design and operation. Future work could extend these optimizations to various battery chemistries and conditions. | |
| dc.identifier.doi | 10.1016/j.csite.2024.105509 | |
| dc.identifier.issn | 2214-157X | |
| dc.identifier.scopus | 2-s2.0-85209238012 | |
| dc.identifier.uri | https://doi.org/10.1016/j.csite.2024.105509 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S2214157X24015405 | |
| dc.identifier.uri | https://hdl.handle.net/11452/49454 | |
| dc.identifier.volume | 64 | |
| dc.identifier.wos | 001360725800001 | |
| dc.indexed.wos | WOS.SCI | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.bap | FGA-2023-1314 | |
| dc.relation.journal | Case Studies in Thermal Engineering | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Ion batteries | |
| dc.subject | Optimization | |
| dc.subject | Battery thermal management | |
| dc.subject | Immersion cooling | |
| dc.subject | Artificial neural network | |
| dc.subject | Hammersley sampling method | |
| dc.subject | Science & technology | |
| dc.subject | Physical sciences | |
| dc.subject | Thermodynamics | |
| dc.title | Artificial neural networks-based multi-objective optimization of immersion cooling battery thermal management system using hammersley sampling method | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 6c72069c-b670-443b-a453-82bc92884d21 | |
| relation.isAuthorOfPublication | 28dc729c-b0e6-44bb-b6e7-3e4cc105d73d | |
| relation.isAuthorOfPublication.latestForDiscovery | 6c72069c-b670-443b-a453-82bc92884d21 |
Dosyalar
Orijinal seri
1 - 1 / 1
