Publication:
Dynamics of a non-circular-shaped nanorod with deformable boundaries based on second-order strain gradient theory

dc.contributor.authorCivalek, Ömer
dc.contributor.buuauthorAkpınar, Murat
dc.contributor.buuauthorAKPINAR, MURAT
dc.contributor.buuauthorUzun, Büşra
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorYaylı, Mustafa Özgür
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı.
dc.contributor.orcid0000-0003-1907-9479
dc.contributor.orcid0009-0002-1683-1987
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridABE-6914-2020
dc.contributor.researcheridKEH-1136-2024
dc.contributor.researcheridAAJ-6390-2021
dc.date.accessioned2025-01-20T05:04:03Z
dc.date.available2025-01-20T05:04:03Z
dc.date.issued2024-09-26
dc.description.abstractIn this study, a general method is developed for the torsional vibration of non-circular-shaped nanorods with varying boundary conditions using second-order strain gradient theory. In most of the studies in the literature, the cross section of the rods is considered to be circular. The reason for this is that the use of warping function is inevitable when the cross section geometry is not circular. For circular cross sections after torsion, the warping is very small and is considered to be non-existent. For non-circular sections, cross section warping should be taken into account in mathematical calculations. The cross section geometry is different from circular in this study, and the boundary conditions are not rigid, contrary to most studies in the literature. In this paper, the second-order strain gradient theory and the most general solution method are discussed. In some specific cases, it is possible to transform the problem into many studies found in the literature. The correctness of the algorithm is tested by comparing the resulting solutions with closed solutions found in the literature. The influence of some variables on the torsional frequencies is illustrated by a series of graphical figures, and the superiority of the applied method is summarized.
dc.identifier.doi10.1007/s00419-024-02683-6
dc.identifier.endpage3572
dc.identifier.issn0939-1533
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85205315639
dc.identifier.startpage3555
dc.identifier.urihttps://doi.org/10.1007/s00419-024-02683-6
dc.identifier.urihttps://hdl.handle.net/11452/49566
dc.identifier.volume94
dc.identifier.wos001320093600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalArchive Of Applied Mechanics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDependent torsional vibration
dc.subjectNonlocal elasticity theory
dc.subjectNanobeams
dc.subjectPlate
dc.subjectNon-circular nanorod
dc.subjectTorsional vibration
dc.subjectWarping function
dc.subjectStokes' transformation
dc.subjectSecond-order strain gradient theory
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMechanics
dc.titleDynamics of a non-circular-shaped nanorod with deformable boundaries based on second-order strain gradient theory
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationdb952b13-125c-47b9-a3cf-e611b79dc97c
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication.latestForDiscoverydb952b13-125c-47b9-a3cf-e611b79dc97c

Files