Yayın:
Free vibration of FG nanobeam using a finite-element method

dc.contributor.buuauthorUzun, Büşra
dc.contributor.buuauthorYaylı, Mustafa Özgür
dc.contributor.buuauthorDeliktaş, Babur
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridAAH-8687-2021
dc.contributor.scopusid57208629064
dc.contributor.scopusid44661926700
dc.contributor.scopusid7801344314
dc.date.accessioned2022-12-12T13:29:09Z
dc.date.available2022-12-12T13:29:09Z
dc.date.issued2020-01-15
dc.description.abstractIn this work, a non-local finite-element formulation is developed to analyse free vibration of functionally graded (FG) nanobeams considering power-law variation of material through thickness of the nanobeam. The Euler Bernoulli beam theory based on Eringen's non-local elasticity theory with one length scale parameter is used to model the FG nanobeam. To this end, two types of FG nanobeams composed of two different materials are analysed by using the developed non-local finite-element formulation. First FG nanobeam is made of alumina (Al2O3) and steel, whereas second one is composed of silicon carbide (SiC) and stainless steel (SUS304). Numerical results are presented to show the effect of power-law exponent (k) and nanostructural length scale (e(0)a/L) on the free vibration of FG nanobeams.
dc.identifier.citationUzun, B. vd. (2020). "Free vibration of FG nanobeam using a finite-element method". Micro and Nano Letters, 15(1), 35-40.
dc.identifier.doi10.1049/mnl.2019.0273
dc.identifier.endpage40
dc.identifier.issn1750-0443
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85077451061
dc.identifier.startpage35
dc.identifier.urihttps://doi.org/10.1049/mnl.2019.0273
dc.identifier.urihttps://ietresearch.onlinelibrary.wiley.com/doi/10.1049/mnl.2019.0273
dc.identifier.urihttp://hdl.handle.net/11452/29833
dc.identifier.volume15
dc.identifier.wos000541513700007
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherWiley
dc.relation.journalMicro and Nano Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGraded nanobeams
dc.subjectElastic medium
dc.subjectScience & technology - other topics
dc.subjectMaterials science
dc.subjectAlumina
dc.subjectAluminum alloys
dc.subjectAluminum oxide
dc.subjectElasticity
dc.subjectNanowires
dc.subjectSilicon alloys
dc.subjectSilicon carbide
dc.subjectSilicon steel
dc.subjectUranium alloys
dc.subjectVibration analysis
dc.subjectBernoulli beam theory
dc.subjectFinite element formulations
dc.subjectFunctionally graded
dc.subjectLength scale parameter
dc.subjectNon-local elasticity theories
dc.subjectPower law exponent
dc.subjectPower law variation
dc.subjectSilicon carbides (SiC)
dc.subjectFinite element method
dc.subject.emtreeAluminum oxide
dc.subject.emtreeFunctionally graded nanobeam
dc.subject.emtreeNanomaterial
dc.subject.emtreeSilicon carbide
dc.subject.emtreeStainless
dc.subject.emtreeSteel
dc.subject.emtreeUnclassified drug
dc.subject.emtreeArticle
dc.subject.emtreeEnergy
dc.subject.emtreeFinite element analysis
dc.subject.emtreeLength
dc.subject.emtreeMass
dc.subject.emtreeRigidity
dc.subject.emtreeThickness
dc.subject.emtreeVibration
dc.subject.emtreeYoung modulus
dc.subject.scopusNonlocal Elasticity; Strain Gradient; Nonlocal
dc.subject.wosNanoscience & nanotechnology
dc.subject.wosMaterials science, multidisciplinary
dc.titleFree vibration of FG nanobeam using a finite-element method
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Uzun_vd_2020.pdf
Boyut:
320.78 KB
Format:
Adobe Portable Document Format
Açıklama

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama