Yayın:
Enhancing pest detection: Assessing: Assessing Tuta absoluta(Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning

dc.contributor.authorBütüner, Alperen Kaan
dc.contributor.authorŞahin, Yavuz Selim
dc.contributor.authorErdinç, Atilla
dc.contributor.authorErdoğan, Hilal
dc.contributor.authorLewis, Edwin
dc.contributor.buuauthorBÜTÜNER, ALPEREN KAAN
dc.contributor.buuauthorŞAHİN, YAVUZ SELİM
dc.contributor.buuauthorErdinç, Atilla
dc.contributor.buuauthorERDOĞAN, HİLAL
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBitki Koruma Bölümü
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.orcid0000-0002-0387-2600
dc.contributor.orcid0000-0001-6848-1849
dc.contributor.researcheridGXV-0837-2022
dc.contributor.researcheridAAP-5834-2020
dc.contributor.researcheridAAH-2823-2021
dc.contributor.researcheridKKR-5369-2024
dc.date.accessioned2025-01-17T07:53:26Z
dc.date.available2025-01-17T07:53:26Z
dc.date.issued2024-01-01
dc.description.abstractThe tomato (Solanum lycopersicum (Solanaceae)) is particularly susceptible to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a pest that directly and profoundly influences tomato yields. Consequently, the early detection of T. absoluta damage intensity on leaves using machine learning or artificial intelligence -based algorithms is crucial for effective pest control. In this ground -breaking study, the galleries generated by T. absoluta were examined via field images using the Decision Trees (DTs) algorithm, a machine learning method. The unique advantage of DTs over other algorithms is their inherent capacity to identify complex and vague shapes without the necessity of feature extraction, providing a more streamlined and effective approach. The DTs algorithm was meticulously trained using pixel values from the leaf images, leading to the classification of pixels within regions with and without galleries on the leaves. Accordingly, the gallery intensity was determined to be 9.09% and 35.77% in the test pictures. The performance of the DTs algorithm, as evidenced by a high precision and an accuracy rate of 0.98 and 0.99 respectively, testifies to its robust predictive and classification abilities. This pioneering study has far-reaching implications for the future of precision agriculture, potentially informing the development of advanced algorithms that can be integrated into autonomous vehicles. The integration of DTs in such applications, due to their unique ability to handle complex and indistinct shapes without the need for feature extraction, sets the stage for a new era of efficient and effective pest control strategies.
dc.identifier.doi10.15832/ankutbd.1308406
dc.identifier.endpage107
dc.identifier.issn1300-7580
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85183005103
dc.identifier.startpage99
dc.identifier.urihttps://doi.org/10.15832/ankutbd.1308406
dc.identifier.urihttps://dergipark.org.tr/en/pub/ankutbd/issue/82623/1308406
dc.identifier.urihttps://hdl.handle.net/11452/49543
dc.identifier.volume30
dc.identifier.wos001156150100006
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherAnkara Üniversitesi
dc.relation.journalJournal of Agricultural Sciences-Tarım Bilimleri Dergisi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBig data
dc.subjectManagement
dc.subjectConvolutional neural networks
dc.subjectDecision trees
dc.subjectImage processing
dc.subjectPest management
dc.subjectPrecision agriculture
dc.subjectAgriculture
dc.titleEnhancing pest detection: Assessing: Assessing Tuta absoluta(Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Bitki Koruma Bölümü
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication88368735-4ba4-4e51-acd2-c92bdb38200f
relation.isAuthorOfPublicationf0d7264d-8e31-4bb8-9f1f-0d8da25f2e7e
relation.isAuthorOfPublication8a30d083-11ef-49d4-b80e-55752fc324f2
relation.isAuthorOfPublication.latestForDiscovery88368735-4ba4-4e51-acd2-c92bdb38200f

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Butuner_vd_2024.pdf
Boyut:
1.72 MB
Format:
Adobe Portable Document Format