Publication:
Understanding the effect of effective metal surface area of flow diverter stent's on the patient-specific intracranial aneurysm numerical model using lagrangian coherent structures

dc.contributor.authorMutlu, Onur
dc.contributor.authorOlcay, Ali Bahadır
dc.contributor.authorBilgin, Cem
dc.contributor.authorHakyemez, Bahattin
dc.contributor.buuauthorBİLGİN, CEM
dc.contributor.buuauthorHAKYEMEZ, BAHATTİN
dc.contributor.departmentBursa Uludağ Üniversitesi/Tıp Fakültesi/Radyoloji Anabilim Dalı
dc.contributor.orcid0000-0002-3425-0740
dc.contributor.researcheridAAI-2318-2021
dc.contributor.researcheridHHS-7433-2022
dc.date.accessioned2024-07-05T10:26:06Z
dc.date.available2024-07-05T10:26:06Z
dc.date.issued2020-10-01
dc.description.abstractThe effective metal surface area (EMSA) of flow diversions plays an essential role in the occlusion mechanism inside the aneurysm since the value of EMSA determines the amount of blood flow into the aneurysm sac. In the present study, three different models of a flow diverter stent, namely FRED 4017, FRED 4038, and FRED 4539, were virtually placed at the aneurysm neck of a 52-years-old female patient to identify the effect of EMSA on stagnation region formation inside the aneurysm sac. Lagrangian coherent structures (LCSs), hyperbolic time, and particle tracking analysis were employed to the velocity vectors obtained from computational fluid dynamics (CFD). It is noticed that use of FRED 4017 stent with 0.42 EMSA value caused nearly 40% of the weightless blood flow particles (more than FRED 4038 and FRED 4539) to stay inside the aneurysm while only 0.35% of the blood flow was remaining inside the aneurysm sac when no stent was placed into the aneurysm site. Furthermore, hyperbolic time computations illustrated the formation of stagnation fluid flow zones that can be associated with the residence time of the blood flow particles. Lastly, the results of hyperbolic time analysis are in good agreement with digital subtraction angiography (DSA) images taken in the clinic a few minutes after a FRED 4017 implantation. (C) 2020 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.jocn.2020.04.111
dc.identifier.eissn1532-2653
dc.identifier.endpage309
dc.identifier.issn0967-5868
dc.identifier.startpage298
dc.identifier.urihttps://doi.org/10.1016/j.jocn.2020.04.111
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0967586820305476
dc.identifier.urihttps://hdl.handle.net/11452/42969
dc.identifier.volume80
dc.identifier.wos000581928700051
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalJournal of Clinical Neuroscience
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak117M491
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBlood-flow
dc.subjectArteries
dc.subjectVelocity
dc.subjectEffective metal surface area (emsa)
dc.subjectFlow diversion
dc.subjectComputational fluid dynamics (cfd)
dc.subjectLagrangian coherent structures (lcss)
dc.subjectHyperbolic time
dc.subjectParticle tracking
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectClinical neurology
dc.subjectNeurosciences
dc.subjectNeurosciences & neurology
dc.titleUnderstanding the effect of effective metal surface area of flow diverter stent's on the patient-specific intracranial aneurysm numerical model using lagrangian coherent structures
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication0d6f0012-9bf8-45ad-95d3-c485f281b363
relation.isAuthorOfPublication9ad8c0f1-5154-4a82-b029-77c58cb35066
relation.isAuthorOfPublication.latestForDiscovery0d6f0012-9bf8-45ad-95d3-c485f281b363

Files

Collections