Publication:
Development of a forecasting framework based on advanced machine learning algorithms for greenhouse gas emissions

dc.contributor.authorYalçın, Seval Ene
dc.contributor.buuauthorENE YALÇIN, SEVAL
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.orcid0000-0001-8248-8924
dc.contributor.researcheridLZT-0673-2025
dc.date.accessioned2025-02-14T08:16:58Z
dc.date.available2025-02-14T08:16:58Z
dc.date.issued2024-12-01
dc.description.abstractThe reduction of greenhouse gas emissions, in order to effectively address the issue of climate change, has critical importance worldwide. To achieve this aim and implement the necessary strategies and policies, the projection of greenhouse gas emissions is essential. This paper presents a forecasting framework for greenhouse gas emissions based on advanced machine learning algorithms: multivariable linear regression, random forest, k-nearest neighbor, extreme gradient boosting, support vector, and multilayer perceptron regression algorithms. The algorithms employ several input variables associated with greenhouse gas emission outputs. In order to evaluate the applicability and performance of the developed framework, nationwide statistical data from Turkey are employed as a case study. The dataset of the case study includes six input variables and annual sectoral and total greenhouse gas emissions in CO2 eq. as output variables. This paper provides a scenario-based approach for future forecasts of greenhouse gas emissions and a sector-based analysis of greenhouse gas emissions in the case country considering multiple input variables. The present study indicates that the stated machine learning algorithms can be successfully applied to the forecasting of greenhouse gas emissions.
dc.identifier.doi10.3390/systems12120528
dc.identifier.eissn2079-8954
dc.identifier.issue12
dc.identifier.scopus2-s2.0-85213450636
dc.identifier.urihttps://doi.org/10.3390/systems12120528
dc.identifier.urihttps://www.mdpi.com/2079-8954/12/12/528
dc.identifier.urihttps://hdl.handle.net/11452/50411
dc.identifier.volume12
dc.identifier.wos001388013700001
dc.indexed.wosWOS.SSCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalSystems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRegression
dc.subjectPerceptron
dc.subjectCo2 emissions
dc.subjectForecasting
dc.subjectGreenhouse gas emissions
dc.subjectMachine learning algorithms
dc.subjectSocial sciences
dc.subjectSocial sciences, interdisciplinary
dc.subjectSocial sciences - other topics
dc.titleDevelopment of a forecasting framework based on advanced machine learning algorithms for greenhouse gas emissions
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationabe821e5-dcfa-449f-8a7f-71b36ed316bb
relation.isAuthorOfPublication.latestForDiscoveryabe821e5-dcfa-449f-8a7f-71b36ed316bb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Yalcın_2024.pdf
Size:
6.79 MB
Format:
Adobe Portable Document Format