Yayın:
Using support vector machines for automatic new topic identification

dc.contributor.authorÖzmutlu, Seda
dc.contributor.authorÖzmutlu, Hüseyin Cenk
dc.contributor.authorSpink A.
dc.contributor.buuauthorÖZMUTLU, SEDA
dc.contributor.buuauthorÖZMUTLU, HÜSEYİN CENK
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.scopusid6603660605
dc.contributor.scopusid6603061328
dc.date.accessioned2025-05-13T14:05:27Z
dc.date.issued2007-01-01
dc.description.abstractRecent studies on automatic new topic identification in Web search engine user sessions demonstrated that learning algorithms such as neural networks and regression have been fairly successful in automatic new topic identification. In this study, we investigate whether another learning algorithm, Support Vector Machines (SVM) are successful in terms of identifying topic shifts and continuations. Sample data logs from the Norwegian search engine FAST (currently owned by Overture) and Excite are used in this study. Findings of this study suggest that support vector machines' performance depends on the characteristics of the dataset it is applied on.
dc.identifier.doi10.1002/meet.145044028
dc.identifier.isbn[0877155399, 9780877155393]
dc.identifier.issn1550-8390
dc.identifier.scopus2-s2.0-47349129245
dc.identifier.urihttps://hdl.handle.net/11452/52742
dc.identifier.volume44
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherAmerican Society for Information Science and Technology
dc.relation.journalProceedings of the ASIST Annual Meeting
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.scopusUser Intent in Search Engines
dc.titleUsing support vector machines for automatic new topic identification
dc.typeconferenceObject
dc.type.subtypeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
relation.isAuthorOfPublicationf49bf060-b2a9-469a-b736-2b4a29401a24
relation.isAuthorOfPublicationf621a75f-52a0-4022-a709-d298db143016
relation.isAuthorOfPublication.latestForDiscoveryf49bf060-b2a9-469a-b736-2b4a29401a24

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Özmutlu_vd_2007.pdf
Boyut:
148.87 KB
Format:
Adobe Portable Document Format