Yayın:
Spatiotemporal pattern of COVID-19 outbreak in Turkey

dc.contributor.authorAral, Neşe
dc.contributor.authorBakır, Hasan
dc.contributor.buuauthorARAL, NEŞE
dc.contributor.buuauthorBAKIR, HASAN
dc.contributor.departmentSosyal Bilimler Meslek Yüksekokulu
dc.contributor.departmentİktisadi ve İdari Bilimler Fakültesi
dc.contributor.departmentUluslararası Ticaret Bilim Dalı
dc.contributor.departmentEkonometri Bölümü
dc.contributor.orcid0000-0001-7599-5047
dc.contributor.orcid0000-0002-8248-6643
dc.contributor.researcheridABD-2939-2020
dc.contributor.researcheridJEI-2603-2023
dc.date.accessioned2024-10-11T05:37:55Z
dc.date.available2024-10-11T05:37:55Z
dc.date.issued2022-06-16
dc.description.abstractThe earliest case of Covid-19 was documented in Wuhan city of China and since then the virus has been spreading throughout the globe. The aim of this study is to evaluate the clusters of Covid-19 among the provinces in Turkey and to examine whether the clustering pattern has changed after the country's lockdown strategy. The spatial dependence of Covid-19 in 81 provinces of Turkey was examined by spatial analysis between February 8 and June 28, 2021. Global and Local Moran's I and Gi* were employed to measure the global and local spatial autocorrelation degrees. The geographical distribution of Covid-19 in the provinces of Turkey showed a strong spatial autocorrelation while the spatial structure of the clusters varied by weeks. The findings of the study show that the complete lockdown carried out in Turkey has been quite effective in mitigating Covid-19. The importance of spatial relations in preventing the spread of the disease in Turkey has also been demonstrated in this context.
dc.identifier.doi10.1007/s10708-022-10666-9
dc.identifier.eissn1572-9893
dc.identifier.endpage1316
dc.identifier.issn0343-2521
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85132282371
dc.identifier.startpage1305
dc.identifier.urihttps://doi.org/10.1007/s10708-022-10666-9
dc.identifier.urihttps://link.springer.com/article/10.1007/s10708-022-10666-9
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200931/
dc.identifier.urihttps://hdl.handle.net/11452/46238
dc.identifier.volume88
dc.identifier.wos000811960100001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalGeojournal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLocal spatial autocorrelation
dc.subjectSars epidemic
dc.subjectAssociation
dc.subjectDynamics
dc.subjectHealth
dc.subjectGis
dc.subjectCovid-19
dc.subjectTurkey
dc.subjectSpatial statistics
dc.subjectSpatial autocorelation
dc.subjectSpatiotemporal pattern
dc.subjectSocial sciences
dc.subjectGeography
dc.titleSpatiotemporal pattern of COVID-19 outbreak in Turkey
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentİktisadi ve İdari Bilimler Fakültesi/Ekonometri Bölümü
local.contributor.departmentSosyal Bilimler Meslek Yüksekokulu/Uluslararası Ticaret Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication568b539a-b9a0-44ac-9d78-3cead8124c2e
relation.isAuthorOfPublication638b130e-daa2-4824-84ef-44d11fc4ac67
relation.isAuthorOfPublication.latestForDiscovery568b539a-b9a0-44ac-9d78-3cead8124c2e

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Aral_Bakır_2023.pdf
Boyut:
1.6 MB
Format:
Adobe Portable Document Format