Publication:
On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem

dc.contributor.authorAshyralyev, Allaberen
dc.contributor.buuauthorÖztürk, Elif
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.scopusid54403582400
dc.date.accessioned2022-12-09T06:50:41Z
dc.date.available2022-12-09T06:50:41Z
dc.date.issued2012-07-26
dc.description.abstractThe BitsadzeSamarskii type nonlocal boundary value problem d2u(t)dt2+Au(t)=f(t),0H is considered. Here, f(t) be a given abstract continuous function defined on [0,1] with values in H, phi and be the elements of D(A), and j are the numbers from the set [0,1]. The well-posedness of the problem in Holder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well-posedness of this difference scheme in difference analogue of Holder spaces is established. For applications, the stability, the almost coercivity, and the coercivity estimates for the solutions of difference schemes for elliptic equations are obtained.
dc.identifier.citationAshyralyev, A. ve Öztürk, E. (2013). "On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem". Mathematical Methods in the Applied Sciences, 36(8), 936-955.
dc.identifier.endpage955
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue8
dc.identifier.scopus2-s2.0-84876751333
dc.identifier.startpage936
dc.identifier.urihttps://doi.org/10.1002/mma.2650
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/mma.2650
dc.identifier.urihttp://hdl.handle.net/11452/29783
dc.identifier.volume36
dc.identifier.wos000318181000006
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherWiley
dc.relation.collaborationYurt içi
dc.relation.journalMathematical Methods in the Applied Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMathematics
dc.subjectElliptic equation
dc.subjectBitsadze-Samarskii nonlocal boundary value problem
dc.subjectDifference scheme
dc.subjectStability
dc.subjectWell-posedness
dc.subjectElliptic-equations
dc.subjectSpaces
dc.subjectCoercive force
dc.subjectConvergence of numerical methods
dc.subjectApplied science
dc.subjectApproximate solution
dc.subjectContinuous functions
dc.subjectDifference schemes
dc.subjectElliptic equations
dc.subjectMathematical method
dc.subjectNonlocal boundary-value problems
dc.subjectPositive definite
dc.subjectBoundary value problems
dc.subject.scopusDifference Scheme; Nonlocal Boundary Value Problems; Identification Problem
dc.subject.wosMathematics, applied
dc.titleOn a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: