Publication: Interpolation function of the (h, q)-extension of twisted Euler numbers
dc.contributor.author | Şimşek, Yılmaz | |
dc.contributor.buuauthor | Özden, Hacer | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | Matematik Bölümü | |
dc.contributor.researcherid | AAH-5090-2021 | |
dc.contributor.scopusid | 23973633900 | |
dc.date.accessioned | 2022-03-15T08:58:49Z | |
dc.date.available | 2022-03-15T08:58:49Z | |
dc.date.issued | 2008-08 | |
dc.description.abstract | In [H. Ozden, Y. Simsek, I.N. Cangul, Generating functions of the (h, q)-extension of Euler polynomials and numbers, Acta Math. Hungarica, in press (doi:10.1007/510474-008-7139-1)], by using p-adic q-invariant integral on Z(P) in the fermionic sense, Ozden et al. constructed generating functions of the (h, q)-extension of Euler polynomials and numbers. They defined (h, q)-Euler zeta functions and (h, q)-Euler l-functions. They also raised the following problem: "Find a p-adic twisted interpolation function of the generalized twisted (h, q)-Eider numbers, E-n.chi.w((h))(q)". The aim of this paper is to give a partial answer to this problem. Therefore, we constructed twisted (h, q)-partial zeta function and twisted p-adic (h, q)-Euler l-functions which interpolate (h, q)-extension of Euler numbers, at negative integers by using this interpolation function and twisted (h, q)-partial zeta function, we proved distribution relations of the (h, q)-extension of generalized Euler polynomials. Consequently we find a partial answer to the above question. - To read graphics please open the file. - | |
dc.description.sponsorship | Akdeniz Üniversitesi | |
dc.identifier.citation | Özden, H. ve Şimşek, Y. (2008). ''Interpolation function of the (h, q)-extension of twisted Euler numbers''. Computers and Mathematics with Applications, 56(4), 898-908. | |
dc.identifier.endpage | 908 | |
dc.identifier.issn | 0898-1221 | |
dc.identifier.issue | 4 | |
dc.identifier.scopus | 2-s2.0-46049100210 | |
dc.identifier.startpage | 899 | |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2008.01.020 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0898122108000928 | |
dc.identifier.uri | http://hdl.handle.net/11452/25038 | |
dc.identifier.volume | 56 | |
dc.identifier.wos | 000258051200006 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | Pergamon-Elsevier Science | |
dc.relation.collaboration | Yurt içi | |
dc.relation.journal | Computers and Mathematics with Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.subject | P-adic q-deformed fermionic integral | |
dc.subject | Twisted p-adic (h, q)-l-functions | |
dc.subject | Twisted q-Euler numbers and polynomials | |
dc.subject | Zeta and l-functions | |
dc.subject | Microfluidics | |
dc.subject | Number theory | |
dc.subject | Numerical analysis | |
dc.subject | Polynomials | |
dc.subject | Euler numbers | |
dc.subject | Euler polynomials | |
dc.subject | Generating functions | |
dc.subject | Interpolation functions | |
dc.subject | Function evaluation | |
dc.subject | Adic q-integrals | |
dc.subject | Q-bernoulli polynomials | |
dc.subject | Q-analog | |
dc.subject | Q)-bernoulli numbers | |
dc.subject | L-series | |
dc.subject | Behavior | |
dc.subject | Z(p) | |
dc.subject.scopus | Euler Polynomials; Bernoulli Numbers; P-Adic Q-Integral | |
dc.subject.wos | Mathematics, applied | |
dc.title | Interpolation function of the (h, q)-extension of twisted Euler numbers | |
dc.type | Article | |
dc.wos.quartile | Q2 | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/Matematik Bölümü | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |