Publication:
A new enhanced mountain gazelle optimizer and artificial neural network for global optimization of mechanical design problems

dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorErdaş, Mehmet Umut
dc.contributor.buuauthorKopar, Mehmet
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Ana Bilim Dalı.
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı.
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridAAH-6495-2019
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2025-02-14T07:17:10Z
dc.date.available2025-02-14T07:17:10Z
dc.date.issued2024-01-24
dc.description.abstractNature-inspired metaheuristic optimization algorithms have many applications and are more often studied than conventional optimization techniques. This article uses the mountain gazelle optimizer, a recently created algorithm, and artificial neural network to optimize mechanical components in relation to vehicle component optimization. The family formation, territory-building, and food-finding strategies of mountain gazelles serve as the major inspirations for the algorithm. In order to optimize various engineering challenges, the base algorithm (MGO) is hybridized with the Nelder-Mead algorithm (HMGO-NM) in the current work. This considered algorithm was applied to solve four different categories, namely automobile, manufacturing, construction, and mechanical engineering optimization tasks. Moreover, the obtained results are compared in terms of statistics with well-known algorithms. The results and findings show the dominance of the studied algorithm over the rest of the optimizers. This being said the HMGO algorithm can be applied to a common range of applications in various industrial and real-world problems.
dc.identifier.doi10.1515/mt-2023-0332
dc.identifier.endpage552
dc.identifier.issn0025-5300
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85183854753
dc.identifier.startpage544
dc.identifier.urihttps://doi.org/10.1515/mt-2023-0332
dc.identifier.urihttps://hdl.handle.net/11452/50397
dc.identifier.volume66
dc.identifier.wos001150854000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMarine predators algorithm
dc.subjectSalp swarm algorithm
dc.subjectGenetic algorithm
dc.subjectParameter optimization
dc.subjectStructural design
dc.subjectSearch algorithm
dc.subjectTopology design
dc.subjectHybrid approach
dc.subjectRobust design
dc.subjectCrashworthiness
dc.subjectMountain gazelle algorithm
dc.subjectOptimization
dc.subjectMechanical design problems
dc.subjectNelder-mead algorithm
dc.subjectAutomobile component
dc.subjectArtificial neural network
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleA new enhanced mountain gazelle optimizer and artificial neural network for global optimization of mechanical design problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Ana Bilim Dalı.
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files