Publication:
Modeling of magnetic properties of nanocrystalline La-doped barium hexaferrite

dc.contributor.authorSözeri, Hüseyin
dc.contributor.authorÖzkan, Hüsnü
dc.contributor.buuauthorKüçük, İlker Semih
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Ana Bilim Dalı
dc.contributor.scopusid6602910810
dc.date.accessioned2022-01-19T11:03:44Z
dc.date.available2022-01-19T11:03:44Z
dc.date.issued2011-05
dc.description.abstractIn this paper an artificial neural network (ANN) has been developed to compute the magnetization of the pure and La-doped barium ferrite powders synthesized in ammonium nitrate melt. The input parameters were: the Fe/Ba ratio, La content, sintering temperature, HCl washing and applied magnetic field. A total of 8284 input data set from currently measured 35 different samples with different Fe/Ba ratios, La contents and washed or not washed in HCl were available. These data were used in the training set for the multilayer perceptron (MLP) neural network trained by Levenberg-Marquardt learning algorithm. The hyperbolic tangent and sigmoid transfer functions were used in the hidden layer and output layer, respectively. The correlation coefficients for the magnetization were found to be 0.9999 after the network was trained.
dc.identifier.citationKüçük, İ. vd. (2011). "Modeling of magnetic properties of nanocrystalline La-doped barium hexaferrite". Journal of Superconductivity and Novel Magnetism, 24(4), 1333-1337.
dc.identifier.endpage1337
dc.identifier.issn1557-1939
dc.identifier.issue4
dc.identifier.scopus2-s2.0-79957479584
dc.identifier.startpage1333
dc.identifier.urihttps://doi.org/10.1007/s10948-010-0828-3
dc.identifier.urihttps://link.springer.com/article/10.1007/s10948-010-0828-3
dc.identifier.urihttp://hdl.handle.net/11452/24166
dc.identifier.volume24
dc.identifier.wos000289489400013
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.bapUAP(F)-2010/19
dc.relation.collaborationYurt içi
dc.relation.collaborationSanayi
dc.relation.journalJournal of Superconductivity and Novel Magnetism
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak2218
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPhysics
dc.subjectLa doped
dc.subjectBarium ferrites
dc.subjectMagnetic properties
dc.subjectModeling
dc.subjectNeural network
dc.subjectPerceptron neural-networks
dc.subjectSol-gel technique
dc.subjectHigh coercivity
dc.subjectFerrite
dc.subjectPowder
dc.subjectCores
dc.subjectMelt
dc.subjectAmmonium compounds
dc.subjectBarium
dc.subjectBarium compounds
dc.subjectFerrite
dc.subjectFerrites
dc.subjectGyrators
dc.subjectHyperbolic functions
dc.subjectLanthanum alloys
dc.subjectLearning algorithms
dc.subjectMagnetic fields
dc.subjectMagnetic properties
dc.subjectMagnetization
dc.subjectSintering
dc.subjectAmmonium nitrate melt
dc.subjectApplied magnetic fields
dc.subjectArtificial neural network
dc.subjectBarium ferrites
dc.subjectBarium hexaferrites
dc.subjectCorrelation coefficient
dc.subjectHidden layers
dc.subjectHyperbolic tangent
dc.subjectInput datas
dc.subjectInput parameter
dc.subjectLa doped
dc.subjectEvenberg-marquardt learning algorithms
dc.subjectModeling
dc.subjectMultilayer perceptron neural networks
dc.subjectNanocrystallines
dc.subjectOutput layer
dc.subjectSigmoid transfer function
dc.subjectSintering temperatures
dc.subjectTraining sets
dc.subjectNeural networks
dc.subject.scopusBarium Hexaferrite; Dromaiidae; Ferrites
dc.subject.wosPhysics, applied
dc.subject.wosPhysics, condensed matter
dc.titleModeling of magnetic properties of nanocrystalline La-doped barium hexaferrite
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: