Publication: Kanatlarda aktif/pasif akış kontrolü ile kanat aerodinamik performans parametrelerinin iyileştirilmesi
Date
Authors
Authors
Sabırlı, Muhammet Üsame
Advisor
Karagöz, İrfan
Language
Type
Publisher:
Bursa Uludağ Üniversitesi
Journal Title
Journal ISSN
Volume Title
Abstract
Kanat üstü akışta stol gerçekleştiğinde kanat kaldırma kuvveti oluşturamaz ve kontrol yüzeyleri tepki veremez hale gelmektedir. Bu çalışmada aktif ve pasif akış kontrol yöntemleri ile bu olayın geciktirilmesi amaçlanmaktadır. Pasif kontrol yöntemi olarak girdap üreteçleri (VG), aktif kontrol yöntemi olarak ise sabit üfleme seçilmiştir. Bu iki yöntemin ayrı ayrı ve birlikte çalıştıkları durumlardaki etkiler deneysel ve sayısal olarak ele alınmıştır. Pasif kontrol kısmında 20°, 40° ve 60° VG’ler, aktif kontrol kısmında ise 1 m3/h ve 2 m3/h debide sabit üflemeden yararlanılmıştır. VG’ler kanadın %25’ine, üfleme delikleri ise %60’ına yerleştirilmiştir. 10 m/s ve 12 m/s hızlarda, 8,3.104 ve 105 Reynolds sayılarında deneyler, ham kanat ve bahsi geçen kontrol sistemlerinin kombinasyonları ile toplamda on iki durum için incelemeler yapılmıştır. Çalışma sonucunda 10 m/s hızı için kanadın stol açısında 6° gecikme, azami CL değerinde ise %20’lik iyileşme, 12 m/s hızı için ise stol açısında 4° gecikme, azami CL değerinde ise %15,3’lük iyileşme elde edilmiştir. Kanat performansının iyileştirilmesinde, kanadın hücum kenarına daha yakın olmasından dolayı, VG’lerin etkileri daha büyük olmuştur. VG’lerin düzensiz hale getirdiği akış, aktif kontrol ile düzenlenerek kontrol mekanizmalarının ayrı ayrı iyileştirmelerinden daha yüksek bir performans elde edilmiştir. CD değerleri incelendiğinde ise stol açısı ötelendiğinden sürüklenmenin azaldığı görülmektedir. Stol öncesi sürüklenme değerlerinde tüm kanatlar kıyaslanırsa 10 m/s için azami fark VG60+1 kanadı ile VG20+2 kanadı arasında %22, 12 m/s için ise azami fark VG20+2 kanadı ile VG20+1 kanadı arasında %20,5 olmuştur. Sayısal hesaplamalar ile akış alanı ve kanat çevresi görselleştirilerek kontrol mekanizmalarının etkileri daha net bir şekilde anlaşılmıştır.
During a stall in the airflow over the wing, the wing loses its ability to generate lift, and the control surfaces become unresponsive. This study aims to delay this phenomenon through the application of active and passive flow control methods. Vortex generators (VGs) are used as the passive control method, and constant blowing is used as the active control method. The effects of these two methods, both separately and in combination, were examined through experimental and numerical analyses. The passive control section utilized VGs at 20°, 40°, and 60°, while the active control section employed constant blowing at flow rates of 1 m³/h and 2 m³/h. VGs were placed on 25% of the wing, and the blowing holes were placed on 60% of the wing. Experiments were conducted at speeds of 10 m/s and 12 m/s and Reynolds numbers of 8.3×10⁴ and 10⁵, examining a total of twelve conditions with the bare wing and the combinations of the control systems. The results showed that for a speed of 10 m/s, a 6° delay in the stall angle and a 20% improvement in the maximum CL value were achieved. For a speed of 12 m/s, a 4° delay in the stall angle and a 15.3% improvement in the maximum CL value were observed. In enhancing wing performance, the effects of VGs were more significant due to their closer proximity to the leading edge. The flow disrupted by the VGs was regulated by active control, resulting in higher performance than the individual improvements of the control mechanisms. Analyzing the CD values, it was noted that drag decreased as the stall angle was postponed. Comparing pre-stall drag values of all wings, for 10 m/s, the maximum difference was 22% between the VG60+1 wing and the VG20+2 wing, while for 12 m/s, the maximum difference was 20.5% between the VG20+2 wing and the VG20+1 wing. Numerical calculations helped visualize the flow field and the area around the wing, providing a better understanding of the control mechanisms' effects.
During a stall in the airflow over the wing, the wing loses its ability to generate lift, and the control surfaces become unresponsive. This study aims to delay this phenomenon through the application of active and passive flow control methods. Vortex generators (VGs) are used as the passive control method, and constant blowing is used as the active control method. The effects of these two methods, both separately and in combination, were examined through experimental and numerical analyses. The passive control section utilized VGs at 20°, 40°, and 60°, while the active control section employed constant blowing at flow rates of 1 m³/h and 2 m³/h. VGs were placed on 25% of the wing, and the blowing holes were placed on 60% of the wing. Experiments were conducted at speeds of 10 m/s and 12 m/s and Reynolds numbers of 8.3×10⁴ and 10⁵, examining a total of twelve conditions with the bare wing and the combinations of the control systems. The results showed that for a speed of 10 m/s, a 6° delay in the stall angle and a 20% improvement in the maximum CL value were achieved. For a speed of 12 m/s, a 4° delay in the stall angle and a 15.3% improvement in the maximum CL value were observed. In enhancing wing performance, the effects of VGs were more significant due to their closer proximity to the leading edge. The flow disrupted by the VGs was regulated by active control, resulting in higher performance than the individual improvements of the control mechanisms. Analyzing the CD values, it was noted that drag decreased as the stall angle was postponed. Comparing pre-stall drag values of all wings, for 10 m/s, the maximum difference was 22% between the VG60+1 wing and the VG20+2 wing, while for 12 m/s, the maximum difference was 20.5% between the VG20+2 wing and the VG20+1 wing. Numerical calculations helped visualize the flow field and the area around the wing, providing a better understanding of the control mechanisms' effects.
Description
Source:
Keywords:
Keywords
Kanat üstü ayrılma, Stol, Akış kontrolü, Hesaplamalı akışkanlar mekaniği (HAD), Deneysel aerodinamik, Duvar kayma gerilmesi, Flow separation on the wing, Stall, Flow control, Computational fluid dynamics (CFD), Experimental aerodynamics, Wall shear