Publication:
Influence of geometrical factors on performance of thermoelectric material using numerical methods

dc.contributor.authorDerebaşı, Naim
dc.contributor.authorEltez, Muhammed
dc.contributor.authorGüldiken, Fikret
dc.contributor.authorSever, Aziz
dc.contributor.authorKallis, Klaus
dc.contributor.authorKılıç, Halil
dc.contributor.buuauthorDEREBAŞI, NAİM
dc.contributor.buuauthorGüldiken, Fikret
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü
dc.contributor.orcid0000-0003-2546-0022
dc.contributor.researcheridAAI-2254-2021
dc.contributor.researcheridCRO-8755-2022
dc.date.accessioned2024-08-12T07:57:18Z
dc.date.available2024-08-12T07:57:18Z
dc.date.issued2015-06-01
dc.descriptionBu çalışma, 06-10, Temmuz 2014 tarihlerinde Nashville[Amerika]’da düzenlenen International Conference on Thermoelectrics (ICT) Kongresi‘nde bildiri olarak sunulmuştur.
dc.description.abstractPrediction of the performance of thermoelectric cooling material (figure of merit, ZT) was carried out by simulated results obtained from the finite element method (FEM) as a training dataset with an artificial neural network. A total of 87 input vectors for the ZT obtained from the four thermoelectric cooling (TEC) modules modeled using the FEM analysis were available in the training set to a back-propagation artificial neural network. An average correlation and maximum prediction error were found to be 100% and 0.01%, respectively, for the ZT after training. The standard deviation of the values was 0.05%. A set of test data, different from the training dataset was used to investigate the network performance. The average correlation and maximum prediction error were found to be 99.92% and 0.07%, respectively, for the tested TEC module. A thermoelectric module produced based on the numerical results was shown to be a promising device for use in cooling systems.
dc.description.sponsorshipLENA Energy & Technology GmbH
dc.description.sponsorshipALDO BW Energy Co.
dc.identifier.doi10.1007/s11664-015-3657-0
dc.identifier.eissn1543-186X
dc.identifier.endpage2073
dc.identifier.issn0361-5235
dc.identifier.issue6
dc.identifier.startpage2068
dc.identifier.urihttps://doi.org/10.1007/s11664-015-3657-0
dc.identifier.urihttps://link.springer.com/article/10.1007/s11664-015-3657-0
dc.identifier.urihttps://hdl.handle.net/11452/43896
dc.identifier.volume44
dc.identifier.wos000353813700100
dc.indexed.wosWOS.SCI
dc.indexed.wosWOS.ISTP
dc.language.isoen
dc.publisherSpringer
dc.relation.journalJournal of Electronic Materials
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectThermoelectric cooling
dc.subjectCooling performance
dc.subjectFigure of merit
dc.subjectArtificial neural network
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectEngineering, electrical & electronic
dc.subjectMaterials science, multidisciplinary
dc.subjectPhysics, applied
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectPhysics
dc.titleInfluence of geometrical factors on performance of thermoelectric material using numerical methods
dc.typeArticle
dc.typeProceedings Paper
dspace.entity.typePublication
relation.isAuthorOfPublication0c85f61f-70fa-4f0d-83a0-a3a0ac50e069
relation.isAuthorOfPublication.latestForDiscovery0c85f61f-70fa-4f0d-83a0-a3a0ac50e069

Files

Collections