Publication:
An investigation on ensemble machine learning algorithms for nonlinear stability response of a two-dimensional FG nanobeam

dc.contributor.authorTariq, Aiman
dc.contributor.authorUzun, Büşra
dc.contributor.authorDeliktaş, Babur
dc.contributor.authorYaylı, Mustafa Özgür
dc.contributor.buuauthorTariq, Aiman
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridAAH-8687-2021
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridAAJ-6390-2021
dc.contributor.researcheridABE-6914-2020
dc.date.accessioned2025-01-16T05:47:34Z
dc.date.available2025-01-16T05:47:34Z
dc.date.issued2024-09-01
dc.description.abstractIn this paper, the nonlinear buckling analysis of two-dimensional functionally graded nanobeams is investigated using ensemble machine learning (ML) techniques and semi-analytical approach based on Fourier series and Stokes' transformation. Ensemble models such as XG boosting, gradient boosting, light gradient boosting, adaptive boosting, random forest, and extra trees regressor are utilized to explore the complex relationship between different input features and the buckling loads of the nanobeams. The training data for these models are derived from the nonlinear strain gradient theory. Performance of ML models are evaluated using multiple metrics such as R2, MAE, MAPE, MSE and RMSE and visual representation techniques like Taylor plots, scatter plots, and box plots. Model interpretation using SHAP analysis is also employed for studying the impact and significance of each input feature on buckling loads. Among all the established models, light gradient boosting demonstrated superior performance in predicting the buckling loads accurately. It is shown that the ensemble ML models can accurately estimate the buckling loads of a two-dimensional functionally graded nanobeam with R2 value of 0.999 given the adequate amount of training data.
dc.identifier.doi10.1007/s40430-024-05093-5
dc.identifier.issn1678-5878
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85201400145
dc.identifier.urihttps://doi.org/10.1007/s40430-024-05093-5
dc.identifier.urihttps://link.springer.com/article/10.1007/s40430-024-05093-5
dc.identifier.urihttps://hdl.handle.net/11452/49469
dc.identifier.volume46
dc.identifier.wos001291992400002
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.bapFGA-2022-1211
dc.relation.journalJournal of The Brazilian Society of Mechanical Sciences and Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBuckling analysis
dc.subjectBeams
dc.subjectVibration
dc.subjectEnsemble machine learning
dc.subjectShap
dc.subjectFourier series
dc.subjectNonlinear buckling analysis
dc.subjectFunctionally graded nanobeam
dc.subjectEngineering
dc.titleAn investigation on ensemble machine learning algorithms for nonlinear stability response of a two-dimensional FG nanobeam
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication.latestForDiscovery9d931598-bdd6-4fdd-b625-909ec0444b5c

Files