Yayın:
Leveraging graph neural networks for IoT attack detection

dc.contributor.authorCeran, O.
dc.contributor.authorÖzdoğan, E.
dc.contributor.authorUysal, M.
dc.contributor.buuauthorÖZDOĞAN, ERDAL
dc.contributor.departmentİnegöl İşletme Fakültesi
dc.contributor.departmentYönetim Bilişim Sistemleri Ana Bilim Dalı
dc.contributor.scopusid57796779300
dc.date.accessioned2025-11-28T11:27:12Z
dc.date.issued2025-06-30
dc.description.abstractThe widespread adoption of Internet of Things (IoT) devices in multiple sectors has driven technological progress; however, it has simultaneously rendered networks vulnerable to advanced cyber threats. Conventional intrusion detection systems face challenges adjusting to IoT environments' ever-changing and diverse characteristics. To address this challenge, researchers propose a novel hybrid approach combining Graph Neural Networks and XGBoost algorithm for robust intrusion detection in IoT ecosystems. This paper presents a comprehensive methodology for integrating GNNs and XGBoost in IoT intrusion detection and evaluates its effectiveness using diverse datasets. The proposed model preprocesses data by standardization, handling missing values, and encoding categorical features. It leverages GNNs to model spatial dependencies and interactions within IoT networks and utilizes XGBoost to distill complex features for predictive analysis. The late fusion technique combines predictions from both models to enhance overall performance. Experimental results on four datasets, including CICIoT-2023, CICIDS-2017, UNSW-NB15, and IoMT-2024, demonstrate the efficacy of the hybrid model. High accuracy, precision, recall, and AUC values indicate the model's robustness in detecting attacks while minimizing false alarms. The study advances IoT security by introducing synergistic solutions and provides practical insights for implementing intrusion detection systems in real-world IoT environments.
dc.identifier.doi10.35377/saucis...1663435
dc.identifier.endpage244
dc.identifier.issn2636-8129
dc.identifier.issue2
dc.identifier.scopus2-s2.0-105010455465
dc.identifier.startpage223
dc.identifier.urihttps://hdl.handle.net/11452/56984
dc.identifier.volume8
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSakarya University
dc.relation.journalSakarya University Journal of Computer and Information Sciences
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectXGBoost
dc.subjectIPS
dc.subjectIoT Security
dc.subjectIoT IDS
dc.subjectGNN
dc.subject.scopusDeep Learning Innovations in IoT Security
dc.titleLeveraging graph neural networks for IoT attack detection
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentİnegöl İşletme Fakültesi/Yönetim Bilişim Sistemleri Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublication3c631de3-8041-40f8-89aa-57957fd07466
relation.isAuthorOfPublication.latestForDiscovery3c631de3-8041-40f8-89aa-57957fd07466

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Ozdogan_2025.pdf
Boyut:
1.35 MB
Format:
Adobe Portable Document Format