Publication:
PRNU-based source device attribution for YouTube videos

dc.contributor.buuauthorKouokam, Emmanuel Kiegaing
dc.contributor.buuauthorDirik, Ahmet Emir
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6200-1717
dc.contributor.researcheridK-6977-2012
dc.contributor.scopusid57208086263
dc.contributor.scopusid23033658100
dc.date.accessioned2023-02-14T07:27:45Z
dc.date.available2023-02-14T07:27:45Z
dc.date.issued2019-03-17
dc.description.abstractPhoto Response Non-Uniformity (PRNU) is a camera imaging sensor imperfection which has earned a great interest for source device attribution of digital videos. A majority of recent researches about PRNU-based source device attribution for digital videos do not take into consideration the effects of video compression on the PRNU noise in video frames, but rather consider video frames as isolated images of equal importance. As a result, these methods perform poorly on re-compressed or low bit-rate videos. This paper proposes a novel method for PRNU fingerprint estimation from video frames taking into account the effects of video compression on the PRNU noise in these frames. With this method, we aim to determine whether two videos from unknown sources originate from the same device or not. Experimental results on a large set of videos show that the method we propose is more effective than existing frame-based methods that use either only I frames or all (I-B-P) frames, especially on YouTube videos.
dc.identifier.citationKouokam, E. K. ve Dirik, A. E. (2019). ''PRNU-based source device attribution for YouTube videos''. Digital Investigation, 29, 91-100.
dc.identifier.endpage100
dc.identifier.issn1742-2876
dc.identifier.issn1873-202X
dc.identifier.scopus2-s2.0-85063756928
dc.identifier.startpage91
dc.identifier.urihttps://doi.org/10.1016/j.diin.2019.03.005
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1742287618304377
dc.identifier.urihttp://hdl.handle.net/11452/31006
dc.identifier.volume29
dc.identifier.wos000469921600009
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.journalDigital Investigation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer science
dc.subjectVideo forensics
dc.subjectSource device attribution
dc.subjectPhoto-response non-uniformity (PRNU)
dc.subjectH.264/AVC
dc.subjectYouTube
dc.subjectComputer graphics
dc.subjectImage coding
dc.subjectImage compression
dc.subjectMultimedia systems
dc.subjectH.264/AVC
dc.subjectPhoto response non uniformities (PRNU)
dc.subjectSource device attribution
dc.subjectVideo forensics
dc.subjectDigital forensics
dc.subject.scopusDigital Image; Tampering; Discrete Cosine Transforms
dc.subject.wosComputer science, information systems
dc.subject.wosComputer science, interdisciplinary applications
dc.titlePRNU-based source device attribution for YouTube videos
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Kouokam_Dirik_2019.pdf
Size:
950.84 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: