Publication:
Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator

dc.contributor.authorAshyralyev, Allaberen
dc.contributor.authorSimos, ‪Theodore E.
dc.contributor.buuauthorYıldırım, Özgür
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0003-1375-2503
dc.contributor.researcheridK-3041-2013
dc.contributor.scopusid35775025200
dc.date.accessioned2022-01-13T06:54:07Z
dc.date.available2022-01-13T06:54:07Z
dc.date.issued2011
dc.descriptionBu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
dc.description.abstractIn the present paper, two new second order of accuracy absolutely stable difference schemes are presented for the nonlocal boundary value problem { d(2)u(t)/dt(2) + Au(t) = f(t) (0 <= t <= 1), u(0) = Sigma(n)(j=1) alpha(j)u(lambda(j)) + phi, u(t)(0) = Sigma(n)(j=1) beta(j)u(t)(lambda(j)) + psi, 0 < lambda(1) < lambda(2) < ... < lambda(n) <= 1 for differential equations in a Hilbert space H with the self-adjoint positive definite operator A. The stability estimates for the solutions of these difference schemes are established. In practice, one-dimensional hyperbolic equation with nonlocal boundary conditions and multidimensional hyperbolic equation with Dirichlet conditions are considered. The stability estimates for the solutions of difference schemes for the nonlocal boundary value hyperbolic problems are obtained and the numerical results are presented to support our theoretical statements.
dc.description.sponsorshipEuropean Soc Computat Methods Sci & Engn (ESCMSE)
dc.description.sponsorshipR M Santilli Fdn
dc.description.sponsorshipACC I S
dc.identifier.citationAshyralyev, A. vd. (2011). "Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator". ed. T. E. Simos. Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, AIP Conference Proceedings, 1389, 597-600.
dc.identifier.endpage600
dc.identifier.isbn978-0-7354-0956-9
dc.identifier.issn0094-243X
dc.identifier.scopus2-s2.0-81855203191
dc.identifier.startpage597
dc.identifier.urihttps://doi.org/10.1063/1.3636801
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.3636801
dc.identifier.urihttp://hdl.handle.net/11452/24059
dc.identifier.volume1389
dc.identifier.wos000302239800147
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherAmer Inst Pyhsics
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalNumerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, AIP Conference Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMathematics
dc.subjectHyperbolic equation
dc.subjectNonlocal boundary value problems
dc.subjectStability
dc.subjectBoundary-value-problems
dc.subjectParabolic equations
dc.subject.scopusDifference Scheme; Nonlocal Boundary Value Problems; Third Order Differential Equation
dc.subject.wosMathematics
dc.subject.wosApplied
dc.titleSecond order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator
dc.typeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: