Yayın:
An analytical benchmark of feature selection techniques for industrial fault classification leveraging time-domain features

dc.contributor.authorSüpürtülü, Meltem
dc.contributor.authorHatipoğlu, Ayşenur
dc.contributor.authorYılmaz, Ersen
dc.contributor.buuauthorSüpürtülü, Meltem
dc.contributor.buuauthorHatipoğlu, Ayşenur
dc.contributor.buuauthorYILMAZ, ERSEN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6412-1421
dc.contributor.orcid0000-0003-0473-7731
dc.contributor.researcheridJWA-3902-2024
dc.contributor.researcheridODJ-6636-2025
dc.contributor.researcheridG-3554-2013
dc.date.accessioned2025-11-06T16:46:59Z
dc.date.issued2025-02-01
dc.description.abstractThe growing size and complexity of industrial datasets have intensified the need for efficient fault diagnostics tools. This study addresses the challenge of handling large-scale data by developing a data-driven architecture for fault classification in industrial systems. To extract meaningful insights, 15 time-domain features were combined with 5 Feature Selection Methods to optimize model performance by eliminating redundant features. The sensor data and selected features were analyzed using the Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) algorithms to enable accurate fault detection and prediction. The proposed framework was validated using publicly available datasets, namely the Case Western Reserve University (CWRU) bearing dataset and the National Aeronautics and Space Administration Ames Prognostics Center of Excellence (NASA PCoE) lithium-ion battery dataset. The results demonstrate the framework's adaptability and high efficacy across diverse scenarios, achieving an average F1-score exceeding 98.40% using only 10 selected features. This finding highlights the effectiveness of embedded Feature Selection Methods in improving classification performance while reducing computational complexity. The study underscores the potential of the proposed framework as a foundational tool in intelligent manufacturing, offering a versatile solution to enhance fault diagnostics in diverse industrial applications.
dc.identifier.doi10.3390/app15031457
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85217739873
dc.identifier.urihttps://doi.org/10.3390/app15031457
dc.identifier.urihttps://hdl.handle.net/11452/56629
dc.identifier.volume15
dc.identifier.wos001418495800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalApplied sciences-basel
dc.subjectDiagnosis
dc.subjectFault classification
dc.subjectFeature selection
dc.subjectLong short-term memory
dc.subjectSupport vector machines
dc.subjectTime-domain feature extraction
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectTechnology
dc.subjectChemistry, multidisciplinary
dc.subjectEngineering, multidisciplinary
dc.subjectMaterials science, multidisciplinary
dc.subjectPhysics, applied
dc.subjectChemistry
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectPhysics
dc.titleAn analytical benchmark of feature selection techniques for industrial fault classification leveraging time-domain features
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationef01a347-7859-4615-8b7d-52528de9d602
relation.isAuthorOfPublication.latestForDiscoveryef01a347-7859-4615-8b7d-52528de9d602

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Süpürtülü_vd_2025.pdf
Boyut:
2.8 MB
Format:
Adobe Portable Document Format