Publication:
First integrals and analytical solutions of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient

dc.contributor.buuauthorYaşar, Emrullah
dc.contributor.buuauthorYıldırım, Yakup
dc.contributor.buuauthorGiresunlu, İlker Burak
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-2190-0003
dc.contributor.orcid0000-0003-4443-3337
dc.contributor.orcid0000-0003-4732-5753
dc.contributor.researcheridAAG-9947-2021
dc.contributor.researcheridISA-5246-2023
dc.contributor.researcheridHTO-9875-2023
dc.contributor.scopusid23471031300
dc.contributor.scopusid56988856400
dc.contributor.scopusid56971548600
dc.date.accessioned2023-09-27T10:28:06Z
dc.date.available2023-09-27T10:28:06Z
dc.date.issued2015-10-20
dc.description.abstractFin materials can be observed in a variety of engineering applications. They are used to ease the dissipation of heat from a heated wall to the surrounding environment. In this work, we consider a nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. The equation(s) under study are highly nonlinear. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. Firstly, we consider the Lie group analysis for different cases of thermal conductivity and the heat transfer coefficients. These classifications are obtained from the Lie group analysis. Then, the first integrals of the nonlinear straight fin problem are constructed by three methods, namely, Noether's classical method, partial Noether approach and Ibragimov's nonlocal conservation method. Some exact analytical solutions are also constructed. The obtained result is also compared with the result obtained by other methods.
dc.identifier.citationYaşar, E. vd. (2016). "First integrals and analytical solutions of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient". Pramana - Journal of Physics, 87(2).
dc.identifier.issn0304-4289
dc.identifier.issn0973-7111
dc.identifier.issue2
dc.identifier.scopus2-s2.0-84983089059
dc.identifier.urihttps://doi.org/10.1007/s12043-016-1227-5
dc.identifier.urihttps://link.springer.com/article/10.1007/s12043-016-1227-5
dc.identifier.urihttp://hdl.handle.net/11452/34088
dc.identifier.volume87
dc.identifier.wos000382006700002
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherIndian Academy of Sciences
dc.relation.journalPramana - Journal of Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPhysics
dc.subjectFin equation
dc.subjectLie symmetry
dc.subjectFirst integrals
dc.subjectExact solutions
dc.subjectPerturbation solution
dc.subjectFins (heat exchange)
dc.subjectHeat transfer coefficients
dc.subjectLie groups
dc.subjectNonlinear equations
dc.subjectEngineering applications
dc.subjectExact analytical solutions
dc.subjectExact solution
dc.subjectFin equations
dc.subjectFirst integral
dc.subjectLie symmetries
dc.subjectPartial noether approach
dc.subjectTemperature-dependent thermal conductivity
dc.subjectThermal conductivity
dc.subject.scopusFins; Differential Transformation Method; Biot Number
dc.subject.wosPhysics, multidisciplinary
dc.titleFirst integrals and analytical solutions of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: