Yayın: Dynamic random walk-based sled dog optimization algorithm and artificial neural network for optimizing design engineering problems
| dc.contributor.author | Sait, Sadik M. | |
| dc.contributor.author | Mehta, Pranav | |
| dc.contributor.author | Gürses, Dildar | |
| dc.contributor.author | Yıldız, Ali Rıza | |
| dc.contributor.buuauthor | GÜRSES, DİLDAR | |
| dc.contributor.buuauthor | YILDIZ, ALİ RIZA | |
| dc.contributor.department | Gemlik Asım Kocabıyık Meslek Yüksekokulu | |
| dc.contributor.department | Elektrik ve Enerji, Hibrit ve Elektrikli Araç Teknolojisi Bölümü | |
| dc.contributor.department | Mühendislik Fakültesi | |
| dc.contributor.department | Makine Mühendisliği Bölümü | |
| dc.contributor.orcid | 0000-0003-1790-6987 | |
| dc.contributor.scopusid | 57224107786 | |
| dc.contributor.scopusid | 7102365439 | |
| dc.date.accessioned | 2025-11-28T08:05:49Z | |
| dc.date.issued | 2025-11-01 | |
| dc.description.abstract | This research presents a modified version of the sled dog optimizer (SDO) to enhance optimization performance across various benchmark functions and real-world applications. The proposed modification introduces adaptive mechanisms to balance exploration and exploitation, thereby improving convergence speed and solution accuracy. Experimental results demonstrate that the modified SDO outperforms the standard SDO and other contemporary metaheuristic algorithms in terms of optimization efficiency and robustness. Comparative analysis of standard test functions and engineering design problems confirms the superiority of the proposed approach. | |
| dc.identifier.doi | 10.1515/mt-2025-0172 | |
| dc.identifier.endpage | 1810 | |
| dc.identifier.issn | 0025-5300 | |
| dc.identifier.issue | 11 | |
| dc.identifier.scopus | 2-s2.0-105021386375 | |
| dc.identifier.startpage | 1803 | |
| dc.identifier.uri | https://hdl.handle.net/11452/56899 | |
| dc.identifier.volume | 67 | |
| dc.indexed.scopus | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Walter de Gruyter GmbH | |
| dc.relation.journal | Materialpruefung Materials Testing | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Structural optimization | |
| dc.subject | Sled dog optimization algorithm | |
| dc.subject | Nature-inspired algorithms | |
| dc.subject | Engineering optimization problem | |
| dc.subject | Brake pedal | |
| dc.subject.scopus | Metaheuristic Algorithms for Optimization Challenges | |
| dc.title | Dynamic random walk-based sled dog optimization algorithm and artificial neural network for optimizing design engineering problems | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Gemlik Asım Kocabıyık Meslek Yüksekokulu/Elektrik ve Enerji, Hibrit ve Elektrikli Araç Teknolojisi Bölümü | |
| local.contributor.department | Mühendislik Fakültesi/Makine Mühendisliği Bölümü | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 1af1d254-5397-464d-b47b-7ddcbaff8643 | |
| relation.isAuthorOfPublication | 89fd2b17-cb52-4f92-938d-a741587a848d | |
| relation.isAuthorOfPublication.latestForDiscovery | 1af1d254-5397-464d-b47b-7ddcbaff8643 |
