Publication:
Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers

dc.contributor.authorArslan, Seval
dc.contributor.authorDemir, Abdullah
dc.contributor.authorŞahin, Seval
dc.contributor.buuauthorAydınlı, Atilla
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0001-5952-5993
dc.contributor.researcheridABI-7535-2020
dc.contributor.scopusid7005432613
dc.date.accessioned2023-09-26T08:17:23Z
dc.date.available2023-09-26T08:17:23Z
dc.date.issued2018-02
dc.description.abstractIn semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and SixO2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. SixO2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.
dc.description.sponsorshipErmaksan A.Ş.
dc.identifier.citationArslan, S. vd. (2018). ''Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers''. Semiconductor Science and Technology, 33(2).
dc.identifier.issn0268-1242
dc.identifier.issn1361-6641
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85040969707
dc.identifier.urihttps://doi.org/10.1088/1361-6641/aaa04d
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1361-6641/aaa04d
dc.identifier.urihttp://hdl.handle.net/11452/34045
dc.identifier.volume33
dc.identifier.wos000419470200001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherIOP Publishing
dc.relation.collaborationYurt içi
dc.relation.journalSemiconductor Science and Technology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectQuantum well intermixing
dc.subjectImpurity free vacancy disordering
dc.subjectSemiconductor laser
dc.subjectStress engineering
dc.subjectQuantum efficiency
dc.subjectThermal-expansion
dc.subjectLaser-diodes
dc.subjectGaas
dc.subjectFabrication
dc.subjectLayer
dc.subjectSio2
dc.subjectCW
dc.subjectDielectric films
dc.subjectDielectric materials
dc.subjectEfficiency
dc.subjectHigh power lasers
dc.subjectMixing; Photonic devices
dc.subjectQuantum well lasers
dc.subjectSemiconductor lasers
dc.subjectSemiconductor quantum wells
dc.subjectSilica
dc.subjectSilicon compounds
dc.subjectStrontium compounds
dc.subjectThermal expansion
dc.subjectDevice characterization
dc.subjectDielectric-semiconductor interfaces
dc.subjectHigh power semiconductor laser
dc.subjectHigh quantum efficiency
dc.subjectImpurity free vacancy disordering
dc.subjectQuantum well intermixing
dc.subjectStress engineering
dc.subjectThermal expansion coefficients
dc.subjectQuantum efficiency
dc.subject.scopusSemiconductor Quantum Wells; Impurities; Aluminum Gallium Arsenides
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosMaterials science, multidisciplinary
dc.subject.wosPhysics, condensed matter
dc.titleConservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers
dc.typeArticle
dc.wos.quartileQ3
dc.wos.quartileQ2 (Physics, condensed matter)
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Aydınlı_vd_2018.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: