Publication: Bounds on co-independent liar's domination in graphs
dc.contributor.author | Prabha, K.S. | |
dc.contributor.author | Amutha, S. | |
dc.contributor.author | Anbazhagan, N. | |
dc.contributor.author | Cangül, İ.N. | |
dc.contributor.buuauthor | CANGÜL, İSMAİL NACİ | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | Matematik Ana Bilim Dalı | |
dc.contributor.orcid | 0000-0002-0700-5774 | |
dc.contributor.scopusid | 57189022403 | |
dc.date.accessioned | 2025-05-13T09:08:35Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | A set S⊆V of a graph G = (V, E) is called a co-independent liar's dominating set of G if (i) for all v ∈ V, |NG[v] ∩ S| ≥ 2, (ii) for every pair u, v ∈ V of distinct vertices, |(NG[u] ∪ NG[v]) ∩ S| ≥ 3, and (iii) the induced subgraph of G on V − S has no edge. The minimum cardinality of vertices in such a set is called the co-independent liar's domination number of G, and it is denoted by cLRcoi(G). In this paper, we introduce the concept of co-independent liar's domination number of the middle graph of some standard graphs such as path and cycle graphs, and we propose some bounds on this new parameter. | |
dc.identifier.doi | 10.1155/2021/5544559 | |
dc.identifier.issn | 2314-4629 | |
dc.identifier.scopus | 2-s2.0-85104450420 | |
dc.identifier.uri | https://hdl.handle.net/11452/51955 | |
dc.identifier.volume | 2021 | |
dc.indexed.scopus | Scopus | |
dc.language.iso | en | |
dc.publisher | Hindawi Limited | |
dc.relation.journal | Journal of Mathematics | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject.scopus | Graph Domination Numbers and Their Applications | |
dc.title | Bounds on co-independent liar's domination in graphs | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/Matematik Ana Bilim Dalı | |
relation.isAuthorOfPublication | 601ef81f-9bdf-4a4a-9ac1-82a82260384d | |
relation.isAuthorOfPublication.latestForDiscovery | 601ef81f-9bdf-4a4a-9ac1-82a82260384d |
Files
Original bundle
1 - 1 of 1