Publication:
Bounds on co-independent liar's domination in graphs

dc.contributor.authorPrabha, K.S.
dc.contributor.authorAmutha, S.
dc.contributor.authorAnbazhagan, N.
dc.contributor.authorCangül, İ.N.
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.scopusid57189022403
dc.date.accessioned2025-05-13T09:08:35Z
dc.date.issued2021-01-01
dc.description.abstractA set S⊆V of a graph G = (V, E) is called a co-independent liar's dominating set of G if (i) for all v ∈ V, |NG[v] ∩ S| ≥ 2, (ii) for every pair u, v ∈ V of distinct vertices, |(NG[u] ∪ NG[v]) ∩ S| ≥ 3, and (iii) the induced subgraph of G on V − S has no edge. The minimum cardinality of vertices in such a set is called the co-independent liar's domination number of G, and it is denoted by cLRcoi(G). In this paper, we introduce the concept of co-independent liar's domination number of the middle graph of some standard graphs such as path and cycle graphs, and we propose some bounds on this new parameter.
dc.identifier.doi10.1155/2021/5544559
dc.identifier.issn2314-4629
dc.identifier.scopus2-s2.0-85104450420
dc.identifier.urihttps://hdl.handle.net/11452/51955
dc.identifier.volume2021
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherHindawi Limited
dc.relation.journalJournal of Mathematics
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.scopusGraph Domination Numbers and Their Applications
dc.titleBounds on co-independent liar's domination in graphs
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication.latestForDiscovery601ef81f-9bdf-4a4a-9ac1-82a82260384d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Cangul_vd_2021.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format

Collections