Yayın:
Machine learning for pedestrian-level wind comfort analysis

dc.contributor.authorGür, Miray
dc.contributor.authorKaradağ, İlker
dc.contributor.buuauthorGÜR, MİRAY
dc.contributor.departmentMimarlık Fakültesi
dc.contributor.departmentMimarlık Bölümü
dc.contributor.orcid0000-0001-7619-7733
dc.contributor.researcheridAAG-9495-2021
dc.contributor.researcheridA-3351-2019
dc.date.accessioned2025-02-06T08:09:17Z
dc.date.available2025-02-06T08:09:17Z
dc.date.issued2024-06-01
dc.description.abstract(1) Background: Artificial intelligence (AI) and machine learning (ML) techniques are being more widely employed in the field of wind engineering. Nevertheless, there is a scarcity of research on the comfort of pedestrians in terms of wind conditions with respect to building design, particularly in historic sites. (2) Objectives: This research aims to evaluate ML- and computational fluid dynamics (CFD)-based pedestrian wind comfort (PWC) analysis outputs using a novel method that relies on the sophisticated handling of image data. The goal is to propose a novel assessment method to enhance the efficiency of AI models over different urban scenarios. (3) Methodology: The stages include the analysis of climate data, CFD analysis with OpenFOAM, ML analysis using Autodesk Forma, and comparisons of the CFD and ML results using a novel image similarity assessment method based on the SSIM, MSE, and PSNR metrics. (4) Conclusions: This study effectively demonstrates the considerable potential of utilizing ML as a supplementary tool for evaluating PWC. It maintains a high degree of accuracy and precision, allowing for rapid and effective assessments. The methodology for precise comparison of two visual outputs in the absence of numerical data allows for more objective and pertinent comparisons, as it eliminates any potential distortions. (5) Recommendations: Additional research can explore the integration of ML models with climate data and different case studies, thus expanding the scope of wind comfort studies.
dc.identifier.doi10.3390/buildings14061845
dc.identifier.eissn2075-5309
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85197281568
dc.identifier.urihttps://doi.org/10.3390/buildings14061845
dc.identifier.urihttps://www.mdpi.com/2075-5309/14/6/1845
dc.identifier.urihttps://hdl.handle.net/11452/50156
dc.identifier.volume14
dc.identifier.wos001254430400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalBuildings
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectNeural-network
dc.subjectPressure coefficients
dc.subjectCfd simulation
dc.subjectPrediction
dc.subjectEnvironment
dc.subjectBuildings
dc.subjectInterference
dc.subjectTunnel
dc.subjectRegression
dc.subjectAccuracy
dc.subjectPedestrian wind comfort
dc.subjectComputational fluid dynamics
dc.subjectMachine learning
dc.subjectCultural heritage
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectConstruction & building technology
dc.subjectEngineering, civil
dc.subjectEngineering
dc.titleMachine learning for pedestrian-level wind comfort analysis
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMimarlık Fakültesi/Mimarlık Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication02261ed6-d090-47a5-a05d-187ba402a426
relation.isAuthorOfPublication.latestForDiscovery02261ed6-d090-47a5-a05d-187ba402a426

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Gur_2024.pdf
Boyut:
7.54 MB
Format:
Adobe Portable Document Format