Yayın:
A note on the exponential diophantine equation (A 2 n) x +(b 2 n) y = ((a 2/sup +b 2 )n) z

dc.contributor.authorLe, Maohua
dc.contributor.authorSoydan, Gökhan
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.buuauthorLe, Maohua
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.scopusid7101650614
dc.contributor.scopusid23566953200
dc.date.accessioned2025-05-13T09:20:34Z
dc.date.issued2020-01-01
dc.description.abstractLet A, B be positive integers such that min{A,B} > 1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A > B3/8, then the equation (A2n)x + (B2n)y = ((A2 + B2 )n)z has no positive integer solutions (x,y,z) with x > z > y; if B > A3/6, then it has no solutions (x,y,z) with y > z > x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A > B3 /8, then this equation has only the positive integer solution (x,y,z) = (1,1,1).
dc.identifier.doi10.3336/gm.55.2.03
dc.identifier.endpage201
dc.identifier.issn0017-095X
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85098650614
dc.identifier.startpage195
dc.identifier.urihttps://hdl.handle.net/11452/52043
dc.identifier.volume55
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherUniversity of Zagreb, Faculty of Mining, Geology and Petroleum Engineering
dc.relation.journalGlasnik Matematicki
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTernary purely exponential Diophantine equation
dc.subject.scopusSolutions in Diophantine Equations
dc.titleA note on the exponential diophantine equation (A 2 n) x +(b 2 n) y = ((a 2/sup +b 2 )n) z
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Soydan_2020.pdf
Boyut:
104.6 KB
Format:
Adobe Portable Document Format