Yayın:
Boosting machine learning algorithms for predicting the macroscopic material behavior of continuous fiber reinforced composite

dc.contributor.authorTariq, Aiman
dc.contributor.authorPolat, Ayşe
dc.contributor.authorDeliktaş, Babur
dc.contributor.buuauthorTariq, Aiman
dc.contributor.buuauthorPolat, Ayşe
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridAAH-8687-2021
dc.contributor.researcheridLFN-3393-2024
dc.date.accessioned2025-01-16T08:05:37Z
dc.date.available2025-01-16T08:05:37Z
dc.date.issued2024-10-17
dc.description.abstractMacroscopic mechanical properties of fibrous materials are often characterized by modeling their microscale behavior using micromechanical techniques. This process typically involves using a Representative Volume Element (RVE) and finite element simulations to obtain the macroscopic behavior through homogenization. However, these micromechanical simulations can be computationally demanding, especially for 3D models with discrete material microstructures. This paper uses boosting machine learning algorithms to predict the homogenized macroscopic material behavior of heterogeneous composites. These models are trained on the micromechanical simulation results generated by varying the constitutive parameters of local phases and microscopic parameters such as fiber volume fraction. The Bayesian optimization is used to determine the best hyperparameters of the considered boosting models, which include adaptive boosting (AdaB), gradient boosting (GBR), light gradient boosting (LGB), and extreme gradient boosting (XGB). The performances of trained models are assessed using various metrics such as R2, MAE, MAPE, and RMSE and using various plots such as scatter plots, Taylor plots, radar plots, and bar plots. The comparative assessment showed that all the models predicted the homogenized stiffness matrix of the RVE successfully, with R2 values between 0.94 and 0.99. The XGB model presented the best overall performance. This work contributes to the field of composites by presenting a new and computationally efficient approach to predict the macroscopic behavior of RVEs using boosting models.
dc.identifier.doi10.1177/07316844241292694
dc.identifier.issn0731-6844
dc.identifier.scopus2-s2.0-85206944807
dc.identifier.urihttps://doi.org/10.1177/07316844241292694
dc.identifier.urihttps://journals.sagepub.com/doi/10.1177/07316844241292694
dc.identifier.urihttps://hdl.handle.net/11452/49481
dc.identifier.wos001335146200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSage Publications Ltd
dc.relation.bapFGA-2022-1211
dc.relation.journalJournal of Reinforced Plastics and Composites
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak119C089
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHomogenization
dc.subjectModel
dc.subjectMultiphase
dc.subjectField
dc.subjectInclusion
dc.subjectFramework
dc.subjectBoosting algorithms
dc.subjectFiber reinforced composite
dc.subjectHomogenization
dc.subjectRepresentative volume elements
dc.subjectMaterials science
dc.subjectPolymer science
dc.titleBoosting machine learning algorithms for predicting the macroscopic material behavior of continuous fiber reinforced composite
dc.typeArticle
dc.type.subtypeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublication.latestForDiscovery61c4d3a5-cfbe-45da-969f-1a074b57717e

Dosyalar