Yayın:
On weak projection invariant extending modules

dc.contributor.authorKara, Yeliz
dc.contributor.buuauthorKARA ŞEN, YELİZ
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-8001-6082
dc.contributor.researcheridAAG-8304-2021
dc.date.accessioned2024-10-30T08:11:07Z
dc.date.available2024-10-30T08:11:07Z
dc.date.issued2022-01-01
dc.description.abstractWe introduce the notion of weak pi-extending modules which is a proper generalization of pi-extending and weak CS-modules. Several characterizations and connections between weak pi-extending modules and related concepts are obtained. Direct sums and direct summand properties are also provided. Moreover, we investigate when the former class has an indecomposable decomposition and exchange properties.
dc.identifier.doi10.7546/CRABS.2022.06.01
dc.identifier.endpage794
dc.identifier.issn1310-1331
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85134838520
dc.identifier.startpage785
dc.identifier.urihttps://doi.org/10.7546/CRABS.2022.06.01
dc.identifier.urihttps://proceedings.bas.bg/index.php/cr/article/view/92
dc.identifier.urihttps://hdl.handle.net/11452/47164
dc.identifier.volume75
dc.identifier.wos000827819400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPubl House Bulgarian Acad Sci
dc.relation.journalComptes Rendus de L Academie Bulgare Des Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectExtending module
dc.subjectProjection invariant submodule
dc.subjectExchange property
dc.subjectScience & technology
dc.subjectMultidisciplinary sciences
dc.titleOn weak projection invariant extending modules
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationcefc08b2-e6fe-4b0b-846e-f8d1b36b7066
relation.isAuthorOfPublication.latestForDiscoverycefc08b2-e6fe-4b0b-846e-f8d1b36b7066

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Kara_2022.pdf
Boyut:
433.67 KB
Format:
Adobe Portable Document Format