Publication: Dynamic hysteresis modelling for nano-crystalline cores
dc.contributor.buuauthor | Küçük, İlker Semih | |
dc.contributor.buuauthor | Hacıismailoğlu, Muhammed Cüneyt | |
dc.contributor.buuauthor | Derebaşı, Naim | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | Fizik Bölümü | |
dc.contributor.orcid | 0000-0002-0781-3376 | |
dc.contributor.orcid | 0000-0003-2546-0022 | |
dc.contributor.researcherid | K-7950-2012 | |
dc.contributor.researcherid | AAI-2254-2021 | |
dc.contributor.scopusid | 6602910810 | |
dc.contributor.scopusid | 8975743500 | |
dc.contributor.scopusid | 11540936300 | |
dc.date.accessioned | 2022-03-18T08:42:04Z | |
dc.date.available | 2022-03-18T08:42:04Z | |
dc.date.issued | 2009-03 | |
dc.description.abstract | This paper presents all artificial neural network approach based oil dynamic Preisach model to compute hysteresis loops of nano-crystalline cores. The network has been trained by a Levenberg-Marquardt learning algorithm. The model is fast and does not require tremendous computational efforts. The results obtained by using the proposed model are in good agreement with experimental results. | |
dc.identifier.citation | Küçük, İ. S. vd. (2009). "Dynamic hysteresis modelling for nano-crystalline cores". Expert Systems with Applications, 36(2), 3188-3190. | |
dc.identifier.endpage | 3190 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.issue | 2 | |
dc.identifier.scopus | 2-s2.0-56349090867 | |
dc.identifier.startpage | 3188 | |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2008.01.084 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417408000997 | |
dc.identifier.uri | http://hdl.handle.net/11452/25185 | |
dc.identifier.volume | 36 | |
dc.identifier.wos | 000262178100060 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | Pergamon-Elsevier Science | |
dc.relation.bap | 2002/4 | |
dc.relation.journal | Expert Systems with Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Dynamic hysteresis model | |
dc.subject | Nano-crystal | |
dc.subject | Neural network | |
dc.subject | Neural-network | |
dc.subject | Genetic algorithm | |
dc.subject | Toroidal cores | |
dc.subject | Power losses | |
dc.subject | Prediction | |
dc.subject | Computer science | |
dc.subject | Engineering | |
dc.subject | Operations research & management science | |
dc.subject | Crystalline materials | |
dc.subject | Hysteresis loops | |
dc.subject | Neural networks | |
dc.subject | Artificial neural network approach | |
dc.subject | Computational effort | |
dc.subject | Dynamic hysteresis modeling | |
dc.subject | Dynamic hysteresis modelling | |
dc.subject | Levenberg-Marquardt learning algorithms | |
dc.subject | Nanocrystalline cores | |
dc.subject | ON dynamics | |
dc.subject | Hysteresis | |
dc.subject.scopus | Silicon Steel; Soft Magnetic Materials; Iron | |
dc.subject.wos | Computer science, artificial intelligence | |
dc.subject.wos | Engineering, electrical & electronic | |
dc.subject.wos | Operations research & management science | |
dc.title | Dynamic hysteresis modelling for nano-crystalline cores | |
dc.type | Article | |
dc.wos.quartile | Q1 | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/Fizik Bölümü | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: