Publication:
Classification of chestnuts according to moisture levels using impact sound analysis and machine learning

dc.contributor.authorKavdir, İsmail
dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.buuauthorÖztüfekçi, Sencer
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentToprak Bilimi ve Bitki Besleme Bölümü
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.researcheridR-8053-2016
dc.contributor.scopusid15848202900
dc.contributor.scopusid57189374728
dc.date.accessioned2024-01-16T11:17:48Z
dc.date.available2024-01-16T11:17:48Z
dc.date.issued2018-12
dc.description.abstractIn this study, a prototype system was designed, built and tested to classify chestnuts using impact sound signals and machine learning methods according to moisture contents. Briefly, the system consisted of a shotgun microphone, a sliding platform, an impact surface, a triggering system, a sound device and a computer. Sound signal data were acquired from 2028 chestnut samples with three different moisture levels. Acoustic signals from chestnut samples were filtered to alleviate negative effects of unwanted noise. Four machine learning classifiers using three different feature sets obtained from two feature groups applying feature reduction methods were trained and tested to classify pairs of chestnut moisture group categories as 35% versus 45%, 35% versus 55%, 45% versus 55% (classification with two outputs) and 35% versus 45% versus 55% (classification with three outputs), respectively. The highest classification success (88%) was achieved for the classification application category of 35 versus 55%.
dc.identifier.citationKurtulmuş, F. vd. (2018). ''Classification of chestnuts according to moisture levels using impact sound analysis and machine learning''. Journal of Food Measurement and Characterization, 12(4), 2819-2834.
dc.identifier.doihttps://doi.org/10.1007/s11694-018-9897-y
dc.identifier.eissn2193-4134
dc.identifier.endpage2834
dc.identifier.issn2193-4126
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85052098596
dc.identifier.startpage2819
dc.identifier.urihttps://link.springer.com/article/10.1007/s11694-018-9897-y
dc.identifier.urihttps://hdl.handle.net/11452/39064
dc.identifier.volume12
dc.identifier.wos000452363700059
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt içi
dc.relation.journalJournal of Food Measurement and Characterization
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak114O783
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFood science & technology
dc.subjectChestnut classification
dc.subjectMoisture level
dc.subjectImpact acoustics
dc.subjectMachine learning
dc.subjectPistachio nuts
dc.subjectSelection
dc.subjectRecognition
dc.subjectPerformance
dc.subjectQuality
dc.subjectAcoustic waves
dc.subjectArtificial intelligence
dc.subjectFruits
dc.subjectMoisture
dc.subjectMoisture determination
dc.subjectAcoustic signals
dc.subjectFeature groups
dc.subjectFeature reduction
dc.subjectPrototype system
dc.subjectMachine learning methods;
dc.subjectTriggering systems
dc.subjectLearning systems
dc.subject.scopusAflatoxins; Seed; Corn Ears
dc.subject.wosFood science & technology
dc.titleClassification of chestnuts according to moisture levels using impact sound analysis and machine learning
dc.typeArticle
dc.wos.quartileQ3 (Food science & technology)
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.contributor.departmentZiraat Fakültesi/Toprak Bilimi ve Bitki Besleme Bölümü
local.indexed.atPubMed
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: