Yayın:
Predictive modeling of bacteria-based nanonetwork performance using simulation-driven machine learning and genetic algorithm optimization

dc.contributor.authorDuman, Mustafa Ozan
dc.contributor.authorIşık, İbrahim
dc.contributor.authorEr, Mehmet Bilal
dc.contributor.authorTagluk, Mehmet Emin
dc.contributor.authorIşık, Esme
dc.contributor.buuauthorDUMAN, MUSTAFA OZAN
dc.contributor.buuauthorIşık, İbrahim
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.researcheridAAG-5915-2019
dc.contributor.researcheridLIF-7142-2024
dc.date.accessioned2025-11-06T16:57:21Z
dc.date.issued2025-09-23
dc.description.abstractBacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single Escherichia coli (E. coli) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (Q), TX-RX distance (d), and bacterial lifespan (), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.
dc.identifier.doi10.1002/adts.202501275
dc.identifier.scopus2-s2.0-105017036489
dc.identifier.urihttps://doi.org/10.1002/adts.202501275
dc.identifier.urihttps://hdl.handle.net/11452/56708
dc.identifier.wos001576643300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalAdvanced theory and simulations
dc.subjectCommunication
dc.subjectChemotaxis
dc.subjectBacteria-based molecular communication
dc.subjectEscherichia coli
dc.subjectGenetic algorithm
dc.subjectMachine learning
dc.subjectMolecular communication
dc.subjectNanonetworks
dc.subjectNanotechnology
dc.subjectScience and technology
dc.subjectMultidisciplinary sciences
dc.subjectScience & technology - other topics
dc.titlePredictive modeling of bacteria-based nanonetwork performance using simulation-driven machine learning and genetic algorithm optimization
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication3d941af8-60f8-4f29-b0d7-c44f917b896c
relation.isAuthorOfPublication.latestForDiscovery3d941af8-60f8-4f29-b0d7-c44f917b896c

Dosyalar