Yayın:
Optimal design of structural engineering components using artificial neural network-assisted crayfish algorithm

dc.contributor.authorSait, Sadiq M.
dc.contributor.authorMehta, Pranav
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorYıldız, Betül Sultan
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0002-1361-7363
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAH-6495-2019
dc.date.accessioned2025-02-06T13:14:35Z
dc.date.available2025-02-06T13:14:35Z
dc.date.issued2024-05-27
dc.description.abstractOptimization techniques play a pivotal role in enhancing the performance of engineering components across various real-world applications. Traditional optimization methods are often augmented with exploitation-boosting techniques due to their inherent limitations. Recently, nature-inspired algorithms, known as metaheuristics (MHs), have emerged as efficient tools for solving complex optimization problems. However, these algorithms face challenges such as imbalance between exploration and exploitation phases, slow convergence, and local optima. Modifications incorporating oppositional techniques, hybridization, chaotic maps, and levy flights have been introduced to address these issues. This article explores the application of the recently developed crayfish optimization algorithm (COA), assisted by artificial neural networks (ANN), for engineering design optimization. The COA, inspired by crayfish foraging and migration behaviors, incorporates temperature-dependent strategies to balance exploration and exploitation phases. Additionally, ANN augmentation enhances the algorithm's performance and accuracy. The COA method optimizes various engineering components, including cantilever beams, hydrostatic thrust bearings, three-bar trusses, diaphragm springs, and vehicle suspension systems. Results demonstrate the effectiveness of the COA in achieving superior optimization solutions compared to other algorithms, emphasizing its potential for diverse engineering applications.
dc.identifier.doi10.1515/mt-2024-0075
dc.identifier.endpage1448
dc.identifier.issn0025-5300
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85194282125
dc.identifier.startpage1439
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0075
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2024-0075/html
dc.identifier.urihttps://hdl.handle.net/11452/50189
dc.identifier.volume66
dc.identifier.wos001230450200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectOptimization algorithm
dc.subjectCrayfish algorithm
dc.subjectOptimization
dc.subjectMechanical design problems
dc.subjectAutomobile component
dc.subjectArtificial neural network
dc.subjectMaterials science
dc.titleOptimal design of structural engineering components using artificial neural network-assisted crayfish algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar