Yayın:
Evaluating solar drying effects and machine learning models for nutritional quality of jerusalem artichoke

dc.contributor.authorÇetin, Necati
dc.contributor.buuauthorALİBAŞ, İLKNUR
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridW-7087-2018
dc.date.accessioned2025-10-21T09:24:15Z
dc.date.issued2025-11-01
dc.description.abstractThis study compares the effects of different drying methods (Natural, Open-sun, Single, Double, and Triple effect solar) on the nutritional components of Jerusalem artichokes. It evaluates the prediction of biochemical properties using machine learning algorithms. The total protein, mineral content, and vitamins were analyzed. The Triple effect solar method best preserved nutrients, maintaining the highest protein content (69379 mg/kg) and beta-carotene (0.68 mg/kg), while the Natural method caused the most significant losses. Ascorbic acid (AA) was also better retained under the Triple effect solar method (94.82 mg/kg vs. 57.41 mg/kg in Natural drying). Machine learning algorithms accurately predicted biochemical properties (R2 > 90.00 %), especially random forest and k-nearest neighbor. Strong correlations were observed between total protein and AA, niacin, and phosphorus. These results show that the Triple effect solar method is optimal for nutrient preservation, and machine learning offers a promising tool for quality prediction and product development in the food industry.
dc.identifier.doi10.1016/j.jfca.2025.108086
dc.identifier.issn0889-1575
dc.identifier.scopus2-s2.0-105011642974
dc.identifier.urihttps://doi.org/10.1016/j.jfca.2025.108086
dc.identifier.urihttps://hdl.handle.net/11452/56004
dc.identifier.volume147
dc.identifier.wos001542138700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherAcademic press inc elsevier science
dc.relation.journalJournal of food composition and analysis
dc.subjectPlant
dc.subjectJerusalem artichoke
dc.subjectSolar dryers
dc.subjectMineral content
dc.subjectVitamins
dc.subjectMachine learning
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectLife Sciences & Biomedicine
dc.subjectChemistry, Applied
dc.subjectFood Science & Technology
dc.subjectChemistry
dc.subjectFood Science & Technology
dc.titleEvaluating solar drying effects and machine learning models for nutritional quality of jerusalem artichoke
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication5a33a7f0-0523-4b0b-aa19-87ef2eb86277
relation.isAuthorOfPublication.latestForDiscovery5a33a7f0-0523-4b0b-aa19-87ef2eb86277

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Alibas_vd_2025.pdf
Boyut:
4.75 MB
Format:
Adobe Portable Document Format