Yayın:
Designing a carbon-based electromagnetic absorber textile material using DS-ABC optimization.

dc.contributor.authorAtıcı, Şeyma
dc.contributor.authorAksoy, Abdullah
dc.contributor.authorAkyıldız, Halil I.
dc.contributor.authorYiğit, Enes
dc.contributor.buuauthorATICI, ŞEYMA
dc.contributor.buuauthorAKSOY, ABDULLAH
dc.contributor.buuauthorAKYILDIZ, HALİL İBRAHİM
dc.contributor.buuauthorYİĞİT, ENES
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
dc.contributor.departmentTekstil Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0002-8727-5829
dc.contributor.scopusid60045502200
dc.contributor.scopusid58085123500
dc.contributor.scopusid55453036900
dc.contributor.scopusid16032674200
dc.date.accessioned2025-11-28T12:11:08Z
dc.date.issued2025-01-01
dc.description.abstractIn this study, lightweight and flexible multilayer radar absorbing materials (MRAMs) are developed using carbon-based textile coatings and optimized through a doublestage Artificial Bee Colony (DS-ABC) algorithm. Polyester and cotton fabrics are dip-coated with polyvinyl alcohol (PVA) solutions containing 5 wt% multi-walled carbon nanotubes (MWCNTs) and 10-30 wt% graphite, resulting in eight distinct material samples. Characterization of the samples is performed via vector network analyzer (VNA) within the frequency range of 2-18 GHz and their electromagnetic properties are compiled into a database for algorithm-based optimization. The DS-ABC algorithm is employed to determine the optimum number of layers, their sequence, and individual thicknesses. Unlike traditional approaches that co-define material types and thicknesses in a fixed parameter space, this method evaluated these attributes independently, allowing for a more comprehensive search of design configurations. As a result, an optimized two-layer MRAM with a total thickness of approximately 7 mm is obtained, consisting of a 3.69 mm cotton fabric coated with 30 wt% graphite and a 3.35 mm polyester fabric coated with 5 wt% MWCNT. The final design achieved an average reflection coefficient below -10 dB across the full frequency band and across incidence angles from 0° to 40°, under transverse electric (TE) and transverse magnetic (TM) polarizations. These findings highlight the potential of carbon-based coated textiles as effective, conformal, and manufacturable EM absorbers for next-generation wearable and stealth applications.
dc.identifier.doi10.1109/ISAS66241.2025.11101740
dc.identifier.isbn[9798331514822]
dc.identifier.scopus2-s2.0-105014914221
dc.identifier.urihttps://hdl.handle.net/11452/57102
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.bapFOA-2021-630, FPDD-2025-2206
dc.relation.journalIsas 2025 9th International Symposium on Innovative Approaches in Smart Technologies Proceedings
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRadar absorbing material (RAM)
dc.subjectOptimization algorithms
dc.subjectMulti-layer radar absorber (MRA)
dc.subjectElectromagnetic (EM) scattering
dc.subjectDouble-stage artificial bee colony (DS-ABC) algorithm
dc.subjectCarbon -based textile coating
dc.subject.scopusInnovative Composite Structures for Electromagnetic Absorption
dc.titleDesigning a carbon-based electromagnetic absorber textile material using DS-ABC optimization.
dc.typeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/Tekstil Mühendisliği Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublicationd691bc8f-d590-4d6a-94fe-4c8cf85f40bd
relation.isAuthorOfPublicationdaf946d3-f9a1-4f54-a589-9f81f8c77528
relation.isAuthorOfPublication284205df-ae00-42f9-a3ae-0ca6f7cca830
relation.isAuthorOfPublication1b0a8078-edd4-454b-b251-2d465c101031
relation.isAuthorOfPublication.latestForDiscoveryd691bc8f-d590-4d6a-94fe-4c8cf85f40bd

Dosyalar