Publication:
Identifying the optimal set of parameters for new topic identification through experimental design

dc.contributor.buuauthorÖzmutllu, Seda
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridAAH-4480-2021
dc.contributor.scopusid6603660605
dc.date.accessioned2022-02-10T08:15:53Z
dc.date.available2022-02-10T08:15:53Z
dc.date.issued2010-12
dc.description.abstractUsers are interested in multiple topics during a search session, and identifying the boundaries of search sessions is an important task. This study proposes to use neural networks for defining the topic boundaries in search engine transaction logs, and is a part of ongoing research on automatic new topic identification. The objective of the study is to determine the best set of parameters for neural networks that are designed to perform automatic new topic identification. Sample data logs from FAST (currently owned by Yahoo) and Excite (currently owned by IAC Search & Media) search engines were analyzed. The findings show that neural networks are fairly successful in identifying topic continuations and shifts in search engine transaction logs. The choice of the neural network structure depends on which performance measure is more important to the user. For a certain performance measure, there is a set of parameters of neural networks that will increase the performance of new topic identification in search engine transaction logs. In addition, the threshold value of the output level of neural networks is the most influential parameter on the performance of new topic identification.
dc.identifier.citationÖzmutlu, S. (2010). "Identifying the optimal set of parameters for new topic identification through experimental design". Expert Systems with Applications, 37(12), 7947-7968.
dc.identifier.endpage7968
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue12
dc.identifier.scopus2-s2.0-77957847350
dc.identifier.startpage7947
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2010.04.040
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0957417410003404
dc.identifier.urihttp://hdl.handle.net/11452/24397
dc.identifier.volume37
dc.identifier.wos000281339900064
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherPergamon-Elsevier Science
dc.relation.journalExpert Systems with Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak105M320
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTopic identification
dc.subjectNeural network
dc.subjectSession identification
dc.subjectSession identification
dc.subjectExperimental design
dc.subjectANOVA
dc.subjectWEB
dc.subjectComputer science
dc.subjectEngineering
dc.subjectOperations research & management science
dc.subjectAnalysis of variance (ANOVA)
dc.subjectDesign of experiments
dc.subjectFire fighting equipment
dc.subjectNeural networks
dc.subjectParameter estimation
dc.subjectStatistics
dc.subjectNeural network structures
dc.subjectOutput levels
dc.subjectPerformance measure
dc.subjectSearch sessions
dc.subjectSession identification
dc.subjectThreshold-value
dc.subjectTopic identification
dc.subjectTransaction log
dc.subjectSearch engines
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosOperations research & management science
dc.titleIdentifying the optimal set of parameters for new topic identification through experimental design
dc.typeArticle
dc.wos.quartileQ2 (Computer science, artificial intelligence)
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: